Name:

1. Suppose we want to find a polynomial $p(t)=c_{1}+c_{2} t$ passing through the three points with (t, y) coordinates given by $(-1,2),(0,3)$ and $(2,5)$. This can't be done, of course. Nevertheless, set up a system of the form $A c=b$ to solve for the coefficients $c=\left(c_{1}, c_{2}\right)$. Your answer will consist of a 3×2 matrix A with numerical entries and a 3 -vector b also with numerical entries.
2. Now set up the normal equation used to solve for the least squares solution. You do not need to solve the system. Your answer will be in the form $B c=d$ where B is a matrix with numerical entries and d is a vector with numerical entries.
3. (Extra credit) Solve the system.
