Name:
Soluetiars

1. Suppose A is an invertible $n \times n$ matrix and that some generous person has provided a QR factorization, so Q is an orthogonal matrix, R is upper triangular matrix with no zeros on the diagonal, and $A=Q R$. Given an n-vector b, state the two steps needed to solve $A x=b$ for x using the QR factorization.
1) Let $w=Q^{\top} b$
2) Solve $R_{x}=w$ using buck substitution,
2. Find a right-inverse for the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

$$
\begin{aligned}
C=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] C^{-1} & =\frac{1}{1-4-3 \cdot 2}\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right] \\
& =\frac{-1}{2}\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 & 3 / 2 \\
1 & -1 / 2
\end{array}\right]
\end{aligned}
$$

Right inverse: $B=$
3. [Extra Credit] Use your right inverse from the previous problem to solve $A x=b$ with $b=(2,4)$

$$
\left[\begin{array}{cc}
-2 & 3 / 2 \\
1 & -1 / 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{cc}
-4 & -6 \\
2 & -2 \\
0
\end{array}\right]
$$

$$
\text { Chess: } A\left[\begin{array}{l}
2 \\
3
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

