Name:

1. Suppose A is an invertible $n \times n$ matrix and that some generous person has provided a QR factorization, so Q is an orthogonal matrix, R is upper triangular matrix with no zeros on the diagonal, and $A=Q R$. Given an n-vector b, state the two steps needed to solve $A x=b$ for x using the QR factorization.
2. Find a right-inverse for the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] .
$$

3. [Extra Credit] Use your right inverse from the previous problem to solve $A x=b$ with $b=(2,4)$
