Name:

1. Let $x=\left(x_{1}, x_{2}, x_{3}\right)$. The vector y is determined from x according to

$$
\begin{aligned}
& y_{1}=x_{1}-x_{2} \\
& y_{2}=x_{2}-x_{3} \\
& y_{3}=x_{3}-x_{1}
\end{aligned}
$$

Determine a matrix A (where all entries of A are numbers) such that $y=A x$.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

2. Suppose the 4 -vector c gives the coefficients of a cubic polynomial $p(t)=c_{1}+c_{2} t+$ $c_{3} t^{2}+c_{4} t^{3}$. Express the conditions

$$
\begin{aligned}
& p(0)+p^{\prime}(0)=0 \\
& p(1)+p^{\prime}(1)=0
\end{aligned}
$$

as a set of linear equations of the form $A c=b$. Give the sizes of A and b, as well as their entries.

$$
\begin{aligned}
& p(0)=c_{1} \quad p^{\prime}(0)=c_{2} \\
& p(1)=c_{1}+c_{2}+c_{3}+c_{4} \\
& p^{\prime}(1)=c_{2}+2 c_{3}+3 c_{4}
\end{aligned}
$$

