Name: Solutions

1. Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

a) ($\mathbf{2}$ points) Explain briefly how you know, without doing any work, that this is a linearly dependent collection of vectors.
If k vectors in \mathbb{R}^{n} are linorly independat, than $k \leqslant n$.
We have 3 vectors in $\mathbb{R}^{n}(k>n)$ so they are linearly dependent,
b) (4 points) Explicitly show that the collection is linearly dependent by writing v_{3} as a linear combination of v_{1} and v_{2}.

$$
\left.\begin{array}{l}
\alpha_{1}+3 \alpha_{2}=7 \\
3 \alpha_{1}-\alpha_{2}=1
\end{array}\right] \text { sole for } \alpha_{1}, \alpha_{2}
$$

$$
\begin{aligned}
& \alpha_{2}=3 \alpha_{1}-1 \\
& \Rightarrow 10 \alpha_{1}=10 \\
& \Rightarrow \alpha_{1}=1 \\
& \Rightarrow \alpha_{2}=2
\end{aligned}
$$

Os by inspection:

$$
v_{1}+2 v_{2}=v_{3}
$$

c) (2 points) Find a set of numbers β_{1}, β_{2} and β_{3}, not all zero, such that $\beta_{1} v_{1}+\beta_{2} v_{2}+$ $\beta_{3} v_{3}=0$.

$$
v_{1}+2 v_{2}-v_{3}=
$$

d) (2 points) One can compute that one solution of

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\begin{array}{c}
12 \tag{1}\\
6
\end{array}\right]
$$

is $\alpha_{1}=2, \alpha_{2}=1$ and $\alpha_{3}=1$. Use your answer for part (c) to find a different linear combination of v_{1}, v_{2} and v_{3} that also equals $(12,6)$. That is, find a different set of numbers α_{1}, α_{2} and α_{3} that also satisfies equation (1).

$$
\begin{aligned}
& \alpha_{1}^{\prime}=\alpha_{1}+\beta_{1}=2+1=3 \\
& \alpha_{2}^{\prime}=\alpha_{2}+\beta_{2}=1+2=3 \\
& \alpha_{3}^{\prime}=\alpha_{3}+\beta_{3}=1+(-1)=0
\end{aligned}
$$

