Name:

1. Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
7 \\
1
\end{array}\right] .
$$

a) ($\mathbf{2}$ points) Explain briefly how you know, without doing any work, that this is a linearly dependent collection of vectors.
b) (4 points) Explicitly show that the collection is linearly dependent by writing v_{3} as a linear combination of v_{1} and v_{2}.
c) ($\mathbf{2}$ points) Find a set of numbers β_{1}, β_{2} and β_{3}, not all zero, such that $\beta_{1} v_{1}+\beta_{2} v_{2}+$ $\beta_{3} v_{3}=0$.
d) (2 points) One can compute that one solution of

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\begin{array}{c}
12 \tag{1}\\
6
\end{array}\right]
$$

is $\alpha_{1}=2, \alpha_{2}=1$ and $\alpha_{3}=1$. Use your answer for part (c) to find a different linear combination of v_{1}, v_{2} and v_{3} that also equals $(12,6)$. That is, find a different set of numbers α_{1}, α_{2} and α_{3} that also satisfies equation (1).

