Name:

1. Let a be a vector and let v be a non-zero vector. As in the figure below, the line through a in the direction v is the set of all vectors of the form $a+s v$ where s is a number. Now consider some third vector x. We want to find the closest point z on the line to x.

a) The square of the distance from x to a point $a+s v$ on the line is given by

$$
f(s)=\|a+s v-x\|^{2} .
$$

Carefully show that this square distance can also be written in the form

$$
f(s)=\|a-x\|^{2}+2 s v^{T}(a-x)+s^{2}\|v\|^{2}
$$

$$
\|a+s v-x\|^{2}=(a-x+s v)^{\top}(a-x+s v)
$$

$$
=(a-x)^{\top}(a-x)+s(a-x)^{\top} v+s v^{\top}(a-x)+s^{2} v^{\top}
$$

$$
=\|a-x\|^{2}+2 s v^{7}(a-x)+s^{2}\|u\|^{2}
$$

b) Recognizing this second expression for $f(s)$ as a quadratic in s, find the value of s that minimizes the square distance.

$$
\begin{array}{r}
\frac{d}{d s}\|a-x\|^{2}+2 s v^{\top}(a-x)+s^{2}\|u\|^{2} \\
=2 v^{\top}(a-x)+2 s\|u\|^{2}
\end{array}
$$

Continued on next page....

$$
s=-\frac{v T(a-x)}{\|v\|^{2}}
$$

c) Using the value of s from part (b), one can show that the closest point z to x on the line is

$$
z=a-\frac{1}{\|v\|^{2}}\left[(a-x)^{T} v\right] v
$$

You don't need to show this. However, use this expression for z to show that $z-x$ is perpendicular to v. Also, illustrate the perpendicularity by adding the point z in the figure above as well as the vector $z-x$.

$$
\begin{aligned}
z-x & =(a-x)-\frac{1}{\pi v \|^{2}}\left[(a-x)^{\top} v\right] v \\
v^{\top}(z-x) & =v^{\top}(a-x)-\frac{1}{\| v v^{2}}\left((a-x)^{\top} v\right) \frac{v^{\top} v}{\|v\|^{2}} \\
& =v^{\top}(a-x)-(a-x)^{\top} v \\
& =0
\end{aligned}
$$

