Name:

1. Let a be a vector and let v be a non-zero vector. As in the figure below, the line through a in the direction v is the set of all vectors of the form $a+s v$ where s is a number. Now consider some third vector x. We want to find the closest point z on the line to x.

a) The square of the distance from x to a point $a+s v$ on the line is given by

$$
f(s)=\|a+s v-x\|^{2} .
$$

Carefully show that this square distance can also be written in the form

$$
f(s)=\|a-x\|^{2}+2 s v^{T}(a-x)+s^{2}\|v\|^{2}
$$

b) Recognizing this second expression for $f(s)$ as a quadratic in s, find the value of s that minimizes the square distance.

c) Using the value of s from part (b), one can show that the closest point z to x on the line is

$$
z=a-\frac{1}{\|v\|^{2}}\left[(a-x)^{T} v\right] v .
$$

You don't need to show this. However, use this expression for z to show that $z-x$ is perpendicular to v. Also, illustrate the perpendicularity by adding the point z in the figure above as well as the vector $z-x$.

