Name: Solutions

1. (4 points) Consider the function $m: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
m(x)=\max \left(x_{1}, x_{2}, x_{3}\right)
$$

Is m linear or not? If it is, find a vector c with $m(x)=c^{T} x$ for all x. If it is not, find a specific example (similar to what you did on your homework) where superposition fails.

$$
\begin{aligned}
& m \text { is not linear } \\
& m(1,0,0)=1 \\
& m(0,1,0)=1 \\
& (1,0,0)+(0,1,0)=(1,1,0) \\
& m(1,1,0)=1 \neq 2=m(1,0,0)+m(0,1,0)
\end{aligned}
$$

2. (4 points) Suppose f is linear and that we know:

$$
\begin{aligned}
& f(1,2,2)=5 \\
& f(2,1,1)=-3
\end{aligned}
$$

Either compute $f(5,4,4)$ (with justification) or explain why this cannot be done with the information given.
Observe:

$$
1\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]+2\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right]
$$

$$
\text { S. } f(5,4,4)=f(1,2,2)+2 f(2,1,1)
$$

$$
=5+2 \cdot(-3)
$$

