Name:

1. (4 points) The vector x has length 30 and each entry is either a 1 or a 0 . Using an inner product, along with vector notation, write down a tidy little expression that equals the total number of ones in x.

$$
1_{30}^{T} x
$$

2. (6 points) Recall the trapezoid rule for integrating functions, as in the figure below, where the integral is estimated using areas of trapezoids. The area of a trapezoid with width w and heights h_{1} and h_{2} is $w\left(h_{1}+h_{2}\right) / 2$.

Let $h=\left(h_{1}, \cdots, h_{5}\right)$ be the vector of heights in the figure, and assume that $\Delta x=1 / 4$. Express the sum of the area of the trapezoids in the form $c^{T} h$. That is, find the vector c. A complete answer expresses c as a vector of 5 explicit numbers.

Area:

$$
\begin{aligned}
\frac{\Delta_{x}}{2} & \left(h_{1}+h_{2}\right)+\frac{\Delta_{x}}{2}\left(h_{2}+h_{3}\right)+\frac{\Delta_{x}}{2}\left(h_{3}+h_{4}\right)+\frac{\lambda_{x}}{2}\left(h_{4}+h_{5}\right) \\
& =\frac{\Delta x}{2}\left[h_{1}+2 h_{2}+2 h_{3}+2 h_{4}+h_{5}\right] \\
& =\frac{1}{8}(1,2,2,2,1)^{\top} h^{\top} \\
c & =(1 / 8,1 / 4,1 / 4,1 / 4,1 / 8)
\end{aligned}
$$

