$$
N(A)=\{x: A x=0\}
$$

Why care? Suppose you solve $A_{x}=b$
Suppose $V \in N(A)$.
Then $x+v$ is another solution
hes to do
with b Moreours if $x_{1}$ and $x_{2}$ both solve $A_{x_{i}}=b$ then $x_{2}=x_{1}+v$ where $v \in N(A)$.

$$
A\left(x_{2}-x_{1}\right)=0
$$

If $A$ is worde and if the rows at $A$ are lineany inde sentat we can almuys solyp

$$
A_{x}=b
$$

$A$ hus a vigut muese, $A^{+}=A^{\top}\left(A A^{\top}\right)^{-1}$
I clam $x=A^{+} b$ is a solution.
Inleed $A_{x}=A A^{\dagger} b=I b=b$
But becuse $A$ is wode the colums of $A$ are not lineary mendependart so $N(A)$ is not ticioul.


Claim: If $\hat{x}=A^{\dagger} b$ and of $z i 3$ anoth solution of $A_{z}=b$ then $\|\hat{x}\| \leqslant\|z\|$

$$
\|z\|^{2}=\|\hat{x}+(z-\hat{x})\|^{2}=\|\hat{x}\|^{2}+\underbrace{2 \hat{x}^{\top}(z-\hat{x})}_{\tau=0}+\|z-\hat{x}\|^{2}
$$

$(a+b)^{\top}(a+b) \quad$ Recall $\hat{x}=A^{\dagger} b=\underbrace{A^{\top}\left(A A^{\top}\right)^{-1}}_{C} b$

$$
\hat{x}=A^{\top} C b
$$

So $\hat{x}^{\top}(z-\hat{x})=\left(A^{\top} C b\right)^{\top}(z-\hat{x})$

$$
\begin{aligned}
& =b^{\top} C^{\top} A(z-\hat{x}) \\
& =b^{\top} C^{\top}[b-b] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \|z\|^{2}=\|\hat{x}\|^{2}+\|z-\hat{x}\|^{2} \\
& \|z\| \geqslant\|\hat{x}\|
\end{aligned}
$$

How to Sued $N(A)$ ? $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 6\end{array}\right]$

Eary cuse is A is row echeler, a cousin of uppertionsuken

$$
\left[\begin{array}{cccccc}
p & x & x & x & x & x \\
\hline 0 & p & x & x & x & x \\
0 & 0 & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$p \neq 0 \quad p$ sise
$\uparrow$ pivet $x$ are any thang.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & 2 & 3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]} \\
A
\end{gathered}\left[\begin{array}{l}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{array} \quad \begin{array}{cc}
x_{1}, x_{3} & \text { pivot var sables. } \\
x_{2} & \text { free variable. }
\end{array}\right.
$$

"special element of $N(A)$ associated with $x_{2}$ "
I'll set $x_{2}=1$ and solve for $x_{1}$ and $x_{3}$ with $A_{x}=0$.

$$
\begin{array}{rlr}
x_{1}+2 x_{2}+3 x_{3}=0 & x_{1}+3 x_{3}=-2 \\
0 x_{1}+0 x_{2}+4 x_{3}=0 \\
0 x_{1}+0 x_{2}+0 x_{3}=0
\end{array} \quad \begin{array}{ll} 
& =0 \\
&
\end{array}
$$

$$
\begin{aligned}
& v=\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
c V \in N(A)
$$

for all numbers
c.
pivots
$\begin{array}{llll}x_{2} x_{2} & \downarrow & x_{3} & x_{4}\end{array} x_{5}$

$$
A=\left[\begin{array}{cccc}
12 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 \\
3 \\
0 & 0 & 0 & 0
\end{array} 110 \begin{array}{c}
x_{1} x_{2} \\
x_{3}
\end{array} x_{4} \begin{array}{c}
x_{5} \\
\hline
\end{array}\right] \begin{gathered}
x_{1}+2 x_{2}=0 \\
x_{3}+2 x_{4}+3 x_{5}=0 \Rightarrow x_{3}=-2 \\
x_{5}=0
\end{gathered}
$$

Two special solutions $x_{2}=1 \quad x_{2}=0$

$$
\begin{gathered}
\begin{array}{l}
x_{4}=0 \\
x_{4}=1 \\
x_{5}=0 \\
x_{4}=0 \\
x_{3}=0 \\
x_{2}=1 \\
x_{1}=-2
\end{array} \rightarrow\left[\begin{array}{l}
-2 \\
1 \\
0 \\
0 \\
v_{1}
\end{array}\right]
\end{gathered} \quad\left[\begin{array}{c}
x_{2}+3 \cdot(-2)+4=0 \\
0 \\
-2 \\
1 \\
0
\end{array}\right] \Leftarrow\left[\begin{array}{c}
c_{1} u_{1}+c_{2} u_{2}=0
\end{array}\right.
$$

$$
N(A)=\left\{c_{1} v_{1}+c_{2} v_{2}: \quad c_{1}, c_{2} \in \mathbb{R}\right\}
$$

$\rightarrow$ all liner combinations of $V_{1}$ and $v_{2}$.


$$
N(A)
$$

$$
\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

