The null space of a matrix
Recall that the colum at a matrove A we linearly memependert if al ashy if the only solution of $A_{x}=0$ is $x=0$.

We II, what if there are interesting (nonzero) solutions of $A x=0$?

This cans only happen if the colum of A are not livery rudependert (ie. they we livery dependant) This is rave when $A_{1 s}$ tall or square
but always hoppers when A is wide.
Def: The val space of A is the set
$N(A)$ of all vectors x with $A_{x}=0$.
(kernel)

If $N(A)=\{0\}$
$0 \in N(A)$
Ill sh. "the rall space is travel"

Why cue?

$$
\left[\begin{array}{lll}
1 & 3 & 7 \\
2 & 4 & 10
\end{array}\right] x=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

A ore solution: $\alpha=\left[\begin{array}{c}4 \\ -1 \\ 0\end{array}\right]$
Consoler $v=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right] \quad A_{v}=0 \quad v \in N(A)$
Comuder $x+v=\left[\begin{array}{c}s \\ 1 \\ -1\end{array}\right]$

$$
\begin{aligned}
A(x+v) & =A x+A v \\
& =\left[\begin{array}{l}
1 \\
4
\end{array}\right]+0
\end{aligned}
$$

$$
A(x+2 v)=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Principle 1) $c V \in N(A)$ for all numbers c.

$$
A_{v}^{\prime}=0 \quad A(c v)=c A_{v}=c 0=0 .
$$

2) If $A_{x}=b$ and if $A_{v}=0$
then $A(x+1)=A_{x+} A v=b$.

Ideally: want to solve $A_{x}=b \quad N(A)$ is not trinal

1) Full are solution \hat{x}
2) Deterns all the thins in $N(A)$ Every solutiven is $\hat{x}+V$ with $v \in N(A)$,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \underset{\downarrow}{\underset{\mathbb{R}^{2}}{N(A)}}=\mathbb{R}^{N}} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=0 \quad N(A)=\left\{c\left[\begin{array}{c}
1 \\
-1
\end{array}\right] ; c \in \mathbb{R}\right\}}
\end{aligned}
$$

In geneal:

1) Sappose for sone matrix A al same b that x solves $A_{x}=5$.
For all $v \in N(A) \quad A(x+v)=b$ as well.

$$
(A(x+v)=A x+A v=b+0=6) \text {. }
$$

2) Suppose x_{1} and x_{2} are solutions of $A_{x}=b$.

Then let $v=x_{2}-x_{1}$.
Then

$$
\begin{aligned}
A_{v}=A\left(x_{2}-x_{2}\right) & =A_{x_{2}}-A_{x_{1}} \\
& =6-b=0
\end{aligned}
$$

So $v \in N(A)$. So $x_{2}=x_{1}+v$ with $v \in N(A)$.

That is: All solutions of $A_{x}=6$ are of the form $\hat{x}+V$ where \hat{x} is are solutiven and ware $v \in N(A)$ is anbitimp.

Sone uull spuces:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{e_{1}} \quad N(A)=?
$$

$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$

$$
\begin{gathered}
x_{1}=0 \\
N(A)=\left\{\left[\begin{array}{l}
0 \\
x_{2} \\
x_{3}
\end{array}\right]: \quad x_{2}, x_{3} \in \mathbb{R}\right\}
\end{gathered}
$$

$$
\mathbb{Q}^{1} \text { its a plase. }
$$

$$
\begin{aligned}
& x=\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right] \quad A x=5 \quad A=[1,0,0] \\
& x=\left[\begin{array}{l}
5 \\
x_{2} \\
x_{3}
\end{array}\right] \quad A x=5 \\
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad N(A)=? \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \frac{N(A)=\left\{\left(0,0, x_{3}\right): x_{3} \in \mathbb{R}\right\}}{(0,0,1)}}
\end{aligned}
$$

Observations:
The null space of A is the set of vectors that are perpendicular to all the rows of A. (By def)

Strectue: Suppose $v_{1}, v_{2} \in N(A)$

Then 1) $v_{1}+v_{2} \in N(A)$

$$
A\left(v_{1}+v_{2}\right)=A v_{1}+A v_{2}=0+0=0
$$

2) $c v_{1} \in N(A)$ for all numbers c.

$$
\begin{aligned}
A\left(c v_{1}\right) & =c\left(A u_{1}\right)=c 0=0 . \\
\alpha v_{1}+\beta v_{2} & \in \mathbb{N}(A)
\end{aligned}
$$

A collection of vectors satisfyrs 1) ad 2) above

If we wart to solve $A_{x}=b$ then $\hat{x}=A^{\dagger} b$ is a solution.

But thane are may solutions.
\hat{x} hus the smallest nom of all the solutions of $A_{x}=b$.
all solutions of $A_{x}=b$

