Recall that the columns at a matrix
$$A$$

are linearly independent if and only if
the only solution of $A_{x}=0$ is $x=0$.

Well, what if there are interesting (nonzero) solutions
of
$$A \times = 0$$
?

but always happens when A is wide, Def: The null space of A is the set N(A) of all vectors & with Ax=0. (kernel)

OEN(A) If N(A) = 303 JII say "the null space" "Etavool"

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad N(A) = \mathbb{R}^{2}$ R $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \qquad \mathcal{N}(A) = \begin{bmatrix} 2 \\ -1 \end{bmatrix} : ceil B$

In general! 1) Sappose for some matrix A al some b that x solves Ax=5. For all $v \in N(A)$ A(x+v) = b as well. (A(x+u) = Ax+Au = b+0 = b).2) Suppose X, and to are solutions of Ax=6. Then let $v = X_2 - X_1$. Then $Av = A(x_2 - x_1) = Ax_2 - Ax_1$ z b - b = O.

So
$$v \in N(A)$$
, So $X_2 = X_1 + V$
with $v \in N(A)$.
That is: All solutions of $A_X = 6$
are of the form $X + V$
where x is one solution and
where $v \in N(A)$ is entitivy.

rul Spucos. Some $A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ N(A)= ζ $\begin{bmatrix} 1 & 0 & 0 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix} = D$ $N(A) = \sum \begin{bmatrix} 0 \\ 1 & x_3 \\ 1 & x_3 \end{bmatrix} : x_0, x_3 \in \mathbb{R}$ we

A=[1,0,0]

Observations:

Suppose $U_1, V_2 \in N(A)$ Strecture:

Then I) $V_1 + V_2 \in N(A)$ $A(v_1 + v_2) = Av_1 + Av_2 = O + O = O$

2) cV, EN(A) for all numbers c. $A(cv_i) = c(Av_i) = cO = O.$

 $\alpha V_1 \perp \beta V_2 \in N(A)$

A collection of vectors satisfying () and Z) above

