List class
Solve $A_{x}=b$ when A is tall
(and here usually there is no solution)

$$
J(x)=\left\|\sqrt{A_{x-b}}\right\|^{2} \longrightarrow A_{x}-b
$$

We try do make $J(\alpha)$ as small as possible.
We we manes tho resichued as sal as possible.
If \hat{x} is a minimize of J

$$
(J(\hat{x}) \leq J(x) \text { for all older vector } x)
$$

Assurs columns of A are licerly independent $A^{\top} A$ is imertible

$$
\begin{aligned}
& A^{\top} A \hat{x}=A^{\top} b \\
& \hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
\end{aligned}
$$

$$
\hat{x}=A^{+} b \quad \text { (lent squeres solulion) }
$$

$$
\begin{aligned}
A^{\top} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{ll}
A^{\top} b \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} & =\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
2
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
A^{\top} A \hat{x}=A^{\top} b \\
I \hat{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow \hat{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{array} \$. \$ \text {. }
\end{aligned}
$$

Tank: find tia point on the lie as clause as passible tob.

$$
\begin{aligned}
& A^{\top} A_{\hat{x}}=A^{\top} b \quad A=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
& L_{5}^{A^{\top} A} \quad \underbrace{A^{\top} b}_{7} \quad\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=3+2.2=7 \\
& 5 x=7 \quad \text { Closest point on live } \\
& x=7 / 5 \quad\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot \frac{7}{5}=\left[\begin{array}{c}
7 / 5 \\
14 / 5
\end{array}\right]
\end{aligned}
$$

Looks like we hue the sresidual $A \hat{x}-b$ is orthosard to v.

$$
\begin{aligned}
& A_{1}-b=\left[\begin{array}{c}
7 / 5 \\
14 / 5
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-8 / 5 \\
4 / 5
\end{array}\right] \\
& v=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \frac{64}{25}+\frac{16}{25}=\frac{80}{25} \\
& U^{\top}(A \hat{x}-b)=\frac{-8}{5}+2 \cdot \frac{4}{5}=0
\end{aligned}
$$

Claim: Wher youn solve $A^{\top} A \hat{x}=A^{\top} b$ the residual $A \hat{x}-b$ is orthogonl to ang liver combunation of the coluers of A,
linear coubo of columes of $A=A z$ for sene arithy vector z.
residud: $A \hat{x}-b \quad A^{\top} A \hat{x}=A^{\top} b$

$$
\begin{aligned}
\left(A_{z}\right)^{\top}\left(A_{\hat{x}}-b\right) & =z^{\top} A^{\top}(A \hat{x}-b) \\
& =z^{\top}\left(\frac{A^{\top} A \hat{x}-A^{\top} b}{0}\right)
\end{aligned}
$$

$$
=z^{\top} 0=0
$$

$A_{z} \perp A_{\hat{x}}-b$

How to solve

$$
\begin{aligned}
A^{\top} A x & =A^{\top} b \\
x & =A^{\top} b
\end{aligned}
$$

$$
A=Q R
$$

1) $w=Q^{\top} b$
2) Solve $R_{x}=w$.

Ten $x=A^{+} b$
$\left(x_{1}, y_{1}\right)$
$\left(x_{2}, y_{2}\right)$
Find un and 6 so that
the linear $y=m x+b$
$\left(x_{1}, y_{n}\right)$ A asses thrash all these points.

$$
\begin{aligned}
& b+m x_{1}=y_{1} \\
& b+m x_{2}=y_{2} \\
& b+m x_{3}=y_{3} \\
& \vdots \\
& b+m x_{n}=y_{n}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
b \\
m
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
\vdots \\
\\
y_{n}
\end{array}\right]
$$

We an look for a least spumes solutice

$$
\begin{aligned}
J((b, m))=\left(y_{1}-\left(b+m x_{1}\right)\right)^{2} & +\left(y_{2}-\left(b+m x_{0}\right)\right)^{2} \\
& +\cdots+\left(y_{1}-\left(b+m x_{1}\right)\right)^{2}
\end{aligned}
$$

