] < more then one adultion,

Next class: Here to compute At using QR

factorization for unle matrices.

 $A^T = Q R$

 $A^{\dagger} = A^{\intercal} (AA^{\intercal})^{-1}$

 $AA^{T} = R^{T}Q^{T}Q^{R}$ $= R^{T}R$

 $(AA^{\mathsf{T}})^{\mathsf{T}} = (R^{\mathsf{T}}R)^{\mathsf{T}}$ $= R^{-\mathsf{T}}(R^{\mathsf{T}})^{-\mathsf{T}}$

 $A^{T} = QR$ $A^{+} = A^{T} R^{-} (R^{T})^{-}$ $= Q_{R}R^{-1}(R^{T})^{-1}$ wide: AT(AAT)-1 $Z = (R^{T})^{-1} b$ $= Q(R^{T})^{-1}$ $R^{T}z = b$ $A^{\dagger}b = O(R^{\intercal})^{-1}b$ AT=QR 1) Solve RTZ = 6 \bigwedge upper $2) \times = QZ$ tri lower tringula use formed selos.

What does At 5 mean when A is fall ad has livenly independent columns. Least squares: $A_{\star}=6$ Atb S "boot value of x !! Ax is as close to b as possible.

$$\overline{J}(A) = \left| \left| A_{X} - b \right| \right|^{Z} = \left(x_{1} - 1 \right)^{Z} + \left(x_{2} - 2 \right)^{Z} + \left(- 3 \right)^{Z} \right)^{Z}$$
$$= \left(x_{1} - 1 \right)^{Z} + \left(x_{2} - 2 \right)^{Z} + 9$$

This is muchized when
$$x_1 = 1$$
 $x_2 = 2$.

$$A_{x-5} \qquad A_{x-5} = \begin{bmatrix} 0.2x_1 + 2.6x_2 & -1 \\ -0.5x_1 + 1.3x_2 & -2 \\ 1.8x_1 - 0.6x_2 - 3 \end{bmatrix}$$

$$J(x) = ||A_{x}-b||^{2} = (0.2x_{1}+2.6x_{2}-1)^{2}$$

$$+ (-0.5x_{1}+1.3x_{2}-2)^{2}$$

$$+ (1.8x_{1}-0.6x_{2}-3)^{2}$$

$$\frac{1}{2}$$

à is the location of the minimum, y is some randem direction X+SY $f(s) = J(\hat{x} + s \gamma)$ minum for f huppers when f'(5) = OA F(5) (ad the minum is at s=0 f'(o) = 0S

 $J(\hat{x}+sy) = ||A(\hat{x}+sy)-b||^2$

 $= \| (A\hat{x}-b) + sAy \|^2$ $\|v_{+\omega}\|^2 = (v_{+\omega})^T (v_{+\omega})$ $\|v + w\|^2 = \|v\|^2 + \|w\|^2 + 2vTw$ $\| A\hat{x} - b \|^{2} + 2s(A_{Y})^{T}(A\hat{x} - b) + s^{2} \| A_{Y} \|^{2}$ $f'(s) = 2(A_{y})^{T}(A_{x}-b) + 2s ||A_{y}||^{2}$ $\frac{1}{9}$ $f'(0) = 2 (A_{y})^{T} (A \neq -6)$

We need
$$Z(A_{\gamma})^{T}(A_{\lambda}^{2}-b) = C$$

for every direction y.

 $Y^{T} A^{T} (A\hat{x} - b) = O$ for all y.

z is a vector and y TZ = O for ally. Suppose

272=0 $\|z\|^2 = 0 = 0$

At a minum
$$\hat{x}$$
 we have to have
 $A^{T}(A\hat{x}-b) = 0$ solve
 $(A^{T}A)\hat{x} = A^{T}b$ normal equation
we assume the columns of A are linearly independent.
Hence $A^{T}A$ is invertible.
 $\hat{x} = (A^{T}A)^{-1}A^{T}b$

 $(A^{T}A)^{T}A^{T}$ At for the tall montrix A.

Findus & so that Ai is as close a possible to b is cruthy $\hat{x} = A^{\dagger}b$.

A = QR1) z = QTL2) $R_{X} = z$ by back salos,