[] $<$ nore then are solutures.

Next class: Hew to conpule A^{+}using $Q R$ factorizatan for urde mutrizes.

$$
\begin{array}{rlrl}
A^{\top} & =Q R & A^{+}=A^{\top}\left(A A^{\top}\right)^{-1} \\
A A^{\top} & =R^{\top} Q^{\top} Q R & & \\
& =R^{\top} R & \left(A A^{\top}\right)^{-1} & =(R R)^{-1} \\
& & =R^{-1}\left(R^{\top}\right)^{-1}
\end{array}
$$

$$
\begin{array}{rlrl}
A^{+} & =A^{\top} R^{-1}\left(R^{\top}\right)^{-1} & A^{\top}=Q R \\
& =Q R R^{-1}\left(R^{\top}\right)^{-1} & & \text { wide: } A^{\top}\left(A A^{\top}\right)^{-1} \\
& =Q\left(R^{\top}\right)^{-1} & & z=\left(R^{\top}\right)^{-1} b \\
& \text { If } \\
A^{+} b & =Q \sqrt{\left(R^{\top}\right)^{-1} b} & & R^{\top} z=b
\end{array}
$$

1) Solve $\sqrt{R^{\top} z=b}$
2) $x=Q z$ we fand subss.

Tall A:
A $\quad A=Q R$ \uparrow
left ware

1) $z=Q^{\top} b$
2) Solve $R_{x}=z$

What does $A^{+} b$ mean when A is tall ad hus livery independent colums.

Lent squares:

$$
A_{x}=b
$$

$A^{+} b{ }^{\text {"bat vale of }}$ "ll
Ax is as close to b as prosible.

Task: Given the tall matrix A ad the vector b, find \hat{x} such taunt
$A \hat{x}$ in as close to b as possible, (find the in er combination of the colum of A that is The bast possible app roxuation of b.
"distanco fun $A x$ to b

$$
J(x)=\|A x-b\|^{2}
$$ squed"

objectue
fenction. We wut to fand \hat{x}
such that $J(\hat{x})$ is a swall as possible.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& A_{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
0
\end{array}\right] \quad A_{x}-b=\left[\begin{array}{c}
x_{1}-1 \\
t_{2}-2 \\
-3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
J(x)=\left\|A_{x}-b\right\|^{2} & =\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2}+(-3)^{2} \\
& =\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2}+9
\end{aligned}
$$

This is mavaized when $x_{1}=1 \quad x_{2}=2$.

$$
A=\left[\begin{array}{cc}
0.2 & 2.6 \\
-0.5 & 1.3 \\
1.8 & -0.6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$A_{x}-b \quad A_{x}-b=\left[\begin{array}{r}0.2 x_{x}+2.6 x_{2}-1 \\ -0.5 x_{x}+1.3 z_{2}-2 \\ 1.8 x_{1}-0.6 x_{z}-3\end{array}\right]$

$$
\begin{aligned}
& J(x)=\left\|A_{x}-b\right\|^{2}=\left(0.2 x_{1}+2.6 x_{2}-1\right)^{2} \\
&+\left(-0.5 x_{1}+1.3 x_{2}-2\right)^{2} \\
&+\left(1.8 x_{1}-0.6 x_{2}-3\right)^{2}
\end{aligned}
$$

\hat{x} is the locution of the minimus.
y is sone raven directer

$$
f(s)=J(\hat{x}+s y)
$$

The miner for f
 harpers when $f^{\prime}(s)=0$ (and the museum is at $s=0$

$$
f^{\prime}(0)=0
$$

$$
J(\hat{x}+5 y)=\|A(\hat{x}+5 y)-b\|^{2}
$$

$$
\begin{aligned}
& =\left\|\left(A_{\hat{x}}-b\right)+s A_{y}\right\|^{2} \\
& \|v+w\|^{2}=\|v\|^{2}+\|w\|^{2}+2 v \top w \quad\|v+w\|^{2}=(v+w)^{\top}(v+w) \\
& =\|A \hat{x}-b\|^{2}+2 s\left(A_{y}\right)^{\top}\left(A_{x} \hat{x}-b\right)+s^{2}\left\|A_{y}\right\|^{2} \\
& f(s) \quad f^{\prime}(s)=2\left(A_{y}\right)^{\top}(A \hat{x}-b)+2 s\left\|A_{y}\right\|^{2} \\
& f^{\prime}(0)=2\left(A_{y}\right)^{\top}(A \hat{x}-b)
\end{aligned}
$$

We reed $Z\left(A_{y}\right)^{\top}\left(A_{\hat{x}}-b\right)=0$
for every direction y.

$$
y^{\top} A^{\top}(A \hat{x}-b)=0 \quad \text { for all } y \text {. }
$$

Suppose z is a natter and $y^{\top} z=0$ for ally.

$$
\begin{aligned}
& z^{\top} z=0 \\
& \|z\|^{2}=0=0
\end{aligned}
$$

At a nimm \hat{x} we hase to had

$$
\begin{aligned}
& A^{\top}(A \hat{x}-b)=0 \\
& \left(A^{\top} A\right) \hat{x}=A^{\top} b
\end{aligned}
$$

noral equation

We asone the colums of A we linenl inclepenbat. Hence $A^{\top} A$ is invertide.

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

$$
\rightarrow A^{\left(A^{\top} A\right)^{-1} A^{\top} \text { fer the tall ment-ix } A \text {. }}
$$

Fundus \hat{x} so that $A_{\hat{x}}$ is as close a possible to b is exactly, $\hat{x}=A^{+} b$.

$$
A=Q R
$$

1) $z=Q^{\top} b$
2) $R_{x}=z$ by hack sobs,
