So, if A'A hus on inverse,
than the colums at A are linerly indepenkert,

$$
\begin{aligned}
A_{x} & =0 \\
x & =0
\end{aligned}
$$

A, colums are laverly independent

$$
\begin{gathered}
A^{+}=\left(A^{\top} A\right)^{-1} A^{\top} \quad \begin{array}{c}
\text { Moore-Porrose inwose } \\
\text { Preudo inverse }
\end{array}
\end{gathered}
$$

Cluim: A^{+}is a left invere of A.
$\left.\begin{array}{rl|l}A^{+} A & =\left(\left(A^{\top} A\right)^{-1} A^{\top}\right) A \\ & =\left(A^{\top} A\right)^{-1}\left(A^{\top} A\right) \\ & =I\end{array}\left|\begin{array}{rl}A^{+} & =\left(A^{\top} A\right)^{-1} A^{\top}\end{array}\right| \begin{array}{rl}\left(A^{\top}\right)^{-1} & =\left(A^{-1}\right)^{\top} \\ & \left.=A^{-\top}\right)^{\top}\end{array}\right\}$

If

$$
\begin{aligned}
A x & =b \\
A^{+} A x & =A^{+} b \\
I x & =A^{+} b \\
x & =A^{+} b
\end{aligned}
$$

$$
A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}
$$

We con compate $A^{\dagger} b$ usues the QR fucturiatios of A

$$
A^{\top}=(Q R)^{\top}
$$

$$
=R^{\top} R
$$

$$
=R^{\top} Q^{\top}
$$

$\left(A^{\top} A\right)^{-1}=\left(R^{\top} R\right)^{-1}$

$$
\begin{aligned}
&=R^{-1}\left(R^{\top}\right)^{-1} \\
& \begin{aligned}
A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top} & =R^{-1}\left(R^{\top}\right)^{-1}(Q R)^{\top} \\
& =R^{-1}\left(R^{\top}\right)^{-1} R^{\top} Q^{\top} \\
& =R^{-1} I Q^{\top} \quad A^{\dagger} b \\
& =R^{-1} Q^{\top} \quad \\
A^{+} & =R^{-1} Q^{\top}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
z=A^{+} b \text { mens } & z=R^{-1} Q^{\top} b \\
& R_{z}=\underbrace{R R^{-1}}_{I} Q^{\top} b \\
& R z=Q^{\top} b \\
z=A^{+} b \Leftrightarrow & R_{z}=Q^{\top} b
\end{aligned}
$$

So: to compute $A^{+} b$

1) form $Q^{\top} b$
2) solve $R_{z}=Q^{\top} b$ usius buek substititum
Th n $z=A^{+} b$

If A is sue and I give you $A=Q R$ and wat ven to soke $A_{x}=b$ for x what do year do?

$$
\begin{aligned}
Q R_{x} & =b \\
\underbrace{Q^{\top} Q}_{I} R_{x} & =Q^{\top} b \\
R_{x} & =Q^{\top} b
\end{aligned}
$$

Now solve for x by back solsotitution,

$$
\begin{aligned}
& A \quad m \times n \quad Q^{\top} Q=I \\
& A=\left[a_{1} \cdots a_{n}\right] \\
& a_{1} \ldots a_{n} \longrightarrow q_{1} \ldots q_{n} \\
& m\left[\begin{array}{lll}
q_{1} & \cdots & q_{n}
\end{array}\right] n_{n}^{n}\left[\begin{array}{cc}
r_{11} & * \\
0 & r_{n n}
\end{array}\right]
\end{aligned}
$$

$a_{1} \quad \tilde{q}_{\|}=a_{1} \quad q_{1}=\tilde{q}_{1 /\left\|z_{1}\right\|}$

$$
\begin{array}{ll}
\tilde{q}_{2}=a_{2}-\left(q_{1}^{\top} a_{2}\right) q_{1} & q_{2}=\tilde{q}_{2} /\left\|\tilde{r}_{2}\right\| \\
\tilde{q}_{2} & =\left\|q_{2}\right\| \cdot q_{2}
\end{array}
$$

$$
\begin{aligned}
& a_{2}=\left\|\tilde{q}_{2}\right\| q_{2}+\left(q_{1}^{\top} a_{2}\right) q_{1} \\
& R=\left[\begin{array}{ccc}
\left\|\tilde{q}_{1}\right\| & \left(q_{1}^{\top} q_{2}\right) & \left(q_{1}^{\top} a_{3}\right) \\
0 & \left\|\tilde{q}_{2}\right\| & \left(q_{2}^{\top} a_{3}\right) \\
\vdots & 0 & \left\|\tilde{q}_{3}^{2}\right\| \\
0 & \vdots &
\end{array}\right.
\end{aligned}
$$

What abant wide natrizes?

$$
m\left[n^{n}\right] \begin{aligned}
& m<n \\
& \text { rishtinvase. }
\end{aligned}
$$

We will buid a left invere for A^{\top}

Well assune tuat A hus liverly nodejenbat rous.
Them AT hus livenly inde perdert coluws.

So $\quad\left(A^{\top}\right)^{\top} A^{\top}=A A^{\top}$ is invertible.
Now we defuse

$$
\begin{aligned}
& A^{+}=A^{\top}\left(A A^{\top}\right)^{-1} \\
& A A^{+}=A A^{\top}\left(A A^{\top}\right)^{-1}=I \\
& A_{x}=b \quad x=A^{+} b \\
& \operatorname{Ten}_{n} \quad A_{x}=A A^{+} b=I b=b .
\end{aligned}
$$

[]< more then are solution.

Next class: Hew to compute A^{+}using $Q R$ factorizutan for wide mutrizes,

