$$
\begin{aligned}
& x, y \in \mathbb{R}^{n} \quad x+y \quad \text { costs } n \text { floats point opentions, } \\
& c \in \mathbb{R} x \in \mathbb{R}^{n} \quad a x \quad n \text { flops } \\
& x-y \quad x, y \in \mathbb{R}^{3} \\
& x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \rightarrow 5 \text { flaps } \\
& x, \mathcal{E} \in \mathbb{R}^{n} \begin{array}{c}
n \text { milts } \\
n-1 \text { adds }
\end{array} \rightarrow 2 n-1^{\text {flops }} \\
& A x^{n \times n} n(2 n-1) \text { flops } \quad\left[\mathbb{R}^{n}\right] \\
& 2 n^{2}-n \text { flops } \\
& \sim 2 n^{2} \text { flops }
\end{aligned}
$$

Solvay $R_{x}=b \quad R$ is upper triangular

$$
\begin{aligned}
& r_{n n} x_{1}=b_{n} \quad l \text { flop } \\
& r_{n-1 n-1} x_{n-1}+r_{n-1 n} x_{n}=b_{n-1} \quad \mid \text { malt, sub, I divivian } \\
& r_{n-2 n-2} x_{1-2}+x_{n-1}+仓 x_{n}=b_{n-2} \\
& x_{n-2}=\frac{1}{r_{n-2 n-2}}\left[b_{n-2}-m x_{n-1}-D x_{n}\right] \\
& 3 \text { flaps }
\end{aligned}
$$

2 matt, 2 sub, 1 division 5 flops x_{n-3}

$$
\begin{aligned}
& n: \quad 1 \text { flog } \\
& n-1: \quad 3 \text { flops } \\
& n-2: \quad \xi \\
& \\
& 2(n-1)+1 \quad f l o p \\
& 1+3+5+7 \cdots+(2(1-1)+1) \\
& 1+(2+1)+(4+1)+\cdots+(2(1-1)+1) \\
& n+0+2+4+\cdots+2(1-1) \\
& n+2(0+1+2+\cdots+n-1)
\end{aligned}
$$

$$
\begin{array}{cc}
n+2 \sum_{k=1}^{n-1} k & \begin{array}{c}
1+2+\cdots+10 \\
10+9 \cdots+1
\end{array} \\
n+2\left(\frac{(n-1) \cdot n}{2}\right) & \underbrace{11+11+\cdots+11} \\
n^{2} & \sum_{k=1}^{n} k=\frac{n(1+1) n}{2}
\end{array}
$$

Solving $R_{x}=b$ takes n^{2} flanus pout opertions
This is cheap. Reahly tre some as multiphus A_{x}

$$
\begin{aligned}
& A x=b \\
& \downarrow \\
& \text { gain } A \text { and } \\
& Q R x=b \\
& \text { compute } A_{x} 2 n^{2}-n \\
& Q^{\top} Q R_{x}=Q^{\top} b \\
& R_{x}=\xrightarrow{Q^{\top} b_{j}} 2 n^{2}-n \sim 2 n^{2} \\
& \text { total: } 3 n^{2}
\end{aligned}
$$

Compute A^{-1} ance yau hare a $Q R$ foct.

$$
\left.\begin{array}{rl}
A \omega_{1} & =e_{1} \\
A \omega_{2} & =e_{2} \\
\vdots \\
A \omega_{n} & =e_{n}
\end{array}\right] \begin{aligned}
A^{-1} & =\left[\begin{array}{lll}
\omega_{1} & w_{2} & \cdots \\
\omega_{n}
\end{array}\right] \\
A A^{-1} & =\left[\begin{array}{llll}
A_{\omega_{1}} & A_{\omega_{2}} & \cdots & A_{w_{n}}
\end{array}\right] \\
& =\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{1}
\end{array}\right] \\
3 n^{2} & =I
\end{aligned}
$$

Total is Ben
epeations to fand A^{-1}

QR factorenton is exprusive onde ot $2 n^{3}$ opentions

LU factor ination

$$
A=L U
$$

$$
\left.\begin{array}{ll}
L_{i s} & \text { lower trimaucuin } \\
U_{\text {is }} & \text { upper tramuck, }
\end{array}\right] \frac{2}{3} n^{3}
$$

Wat tosolve $\quad A_{+}=b$

$$
L U_{x}=b
$$

1) Sole $L w=b \quad n^{2}$
2) Sole $U_{x}=w \quad n^{2}$

$$
L U_{x}=L w=b \quad L u^{2} \text { op. }
$$

(Its cheaper)

Pscudo Invase.

We've workd with solvins $A_{x}=b$ when A is squale and has linaik ind. colemas.
(when it is ivertible)
(QR feactorization)

What if we relax the condition then A is sque but still requare that the coluurs of A we limenly inde pardat.

If A hus a left invose then its colons we linearly inge perdatis

I'm goons to shaw you haw when the columns are lin. ind to build a left inverse, A^{+}(psendo muse)
If you con fud this left inverse ad if there is a solution of $A_{x}=b$
then

$$
\begin{aligned}
& A^{+} A x=A^{+} b \\
& I x=A^{+} b \Rightarrow x=A^{+} b
\end{aligned}
$$

(Can check afterureds if $A_{x}=b$)
Next ohpler will explen who $A^{t} b$ is even when there is no solution,
C lues: The colons of A we liverily rudprudent of ad only if the match
$A^{\top} A$ is inverible.
\rightarrow Gram ratio af A
A $m \times n$ where $m \geqslant n$

$$
A^{\top} \quad A_{m \times n} \quad A^{\top} A \quad u \times n
$$ squall!!

Recall: The colum of a matrix B are linearly indeperalut if and orly if the early solution of $B_{x}=0$

$$
B x=0 \text {. }
$$

Suppose A hus linerly redependert column.
Suppose x is a vector where $A^{\top} A_{x}=0$
Then $\quad x^{\top} A^{\top} A x=0$

$$
\begin{aligned}
\left(A_{x}\right)^{\top}\left(A_{x}\right) & =0 \\
\left\|A_{x}\right\|^{2} & =0 \\
\text { so } \quad A_{x} & =0 \\
\text { so } & x=0
\end{aligned}
$$

Assumed A hus lin. ind cols.
If $A^{\top} A x=0$ then $x=0$.
So $A^{\top} A$ his linearly ind. columns,

So $A^{\top} A$ is invertible.
Suppose the colums of A we not linearly ind. Then thane is a vector $x \neq 0$ with $A x=0$.

Fer thurs some $x, \quad A^{\top} A x=0$
So $x \neq 0$ and $A^{\top} A_{x}=0$.
So the colum of $A^{\top} A$ are not livery independent.
Sn ATA does not hue an invars.
If the colum of A we not lively ind then $A^{\top} A$ does not hue an iwese.

So, if A'A hus on inverse,
than the colums at A are linerly indepenkert,

$$
\begin{aligned}
A_{x} & =0 \\
x & =0
\end{aligned}
$$

A, colums are laverly independent

$$
\begin{gathered}
A^{+}=\left(A^{\top} A\right)^{-1} A^{\top} \quad \begin{array}{c}
\text { Moore-Porrose inwose } \\
\text { Preudo inverse }
\end{array}
\end{gathered}
$$

Cluim: A^{+}is a left invere of A.

