Invatible Matrices
has an inverse \Rightarrow squure

$$
A, A^{-1}
$$

Diag oul matrick $\operatorname{diog}\left(d_{1,}, \ldots, d_{n}\right)$

$$
D=\left[\begin{array}{llll}
d_{1} & & \\
& d_{2} & 0 \\
0 & \ddots & \\
0 & & d_{u}
\end{array}\right]
$$

clam: D hus an mase if and anly if each $d_{i} \neq 0$.

Sappose euch $d_{i} \neq 0$.
all ok brewuse
Clumn $D^{-1}=\operatorname{dim}\left(d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}^{-1}\right)$ and $d_{1}-\neq 0$.

$$
\begin{aligned}
D \cdot\left[\begin{array}{ccc}
d_{1}^{-1} & d_{1}^{-1} & 0 \\
0 & \ddots & d_{n}^{-1}
\end{array}\right] & =\left[\begin{array}{lll}
D\left[\begin{array}{c}
d_{1}^{-1} \\
0 \\
\vdots \\
0
\end{array}\right] & D\left[\begin{array}{c}
0 \\
d_{2}^{-1} \\
0 \\
j
\end{array}\right] \ldots & D\left[\begin{array}{l}
0 \\
\vdots \\
j_{n}^{-1} \\
d_{n}
\end{array}\right]
\end{array}\right] \\
& =\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right]=I \\
A=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] & =x_{1} a_{2}+\cdots+x_{n} a_{n} \quad[1000]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=[1]
\end{aligned}
$$

Ortheymal matra A

$$
A A^{\top}=I
$$

\rightarrow sqene, cal amss ove orthonomul
\cos isf vaos of Aore on $A^{\top} A=I \Leftrightarrow$ cols of A are onn.

If $A^{\text {is }}$ spue and $A^{\top} A=I$
then A hus a left moses, A^{T} ?

$$
A^{-1}=A^{\top} \quad A A^{\top}=I
$$

Ned fact: For a aqua matrix, the columessee on. if and orly of the rows are on.

Remark. Comider A $m \times n$.
The colums of A we linenly indepectert is and anly if the arly solution of

$$
A_{x}=0 \text { is } x=0 \text {. }
$$

$A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$ The a_{j}^{\prime} 's we linearbind iff The ony litm cabbo $\underbrace{x_{1}+\cdots x_{1} m_{n}=0}_{1}$ has $x_{1}=x_{2}=\cdots x_{n}=0$.

$$
q^{-} A\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=0
$$

$$
3 x=0 .
$$

If A is squae than it is invectible if and anly if the anly solution of

$$
A_{+}=0 \quad \text { is } \quad x=0
$$

"The coluers of A are ortho nomal"
"A is an onthagal autrex"
G 1) squere
2) coluns we on thonormal

Oppen trinugular mutrcces:

$$
R=\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \cdots & r_{2 n} \\
0 & 0 & r_{20} & \cdots \\
0 & r_{3 n} \\
0 & \ddots & r_{n n}
\end{array}\right]
$$

when is R invertlole? precisely whan each $r_{i:} \neq 0$.
what's the solutices

$$
R x=0
$$

$$
\begin{aligned}
& r_{n-r_{1}} x_{n-1}+r_{n+1} x_{1}=0 \\
& \uparrow r_{n n} x_{n}=0 \rightarrow x_{n}=0 \\
& \underset{\substack{\text { not } \\
\text { zero. }}}{\left(r_{n-1}-\right)} x_{n-1}=0 \rightarrow x_{n-1}=0 \\
& x_{1}=x_{2}=\cdots=x_{1}=0
\end{aligned}
$$

What if siene $r_{i i}=0$

Clawn: the colums of
this matrix are not liverly independert.

$$
\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23}
\end{array}\right] \text { \&theavectors } \begin{gathered}
M \mathbb{R}^{2} \text {, wot }
\end{gathered}
$$

liscaly indepardent

$$
\left[\begin{array}{ccc}
r_{1} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]<
$$

orent livenly ude perdent either

$$
O x_{k}+* x_{k+1} \cdots+* x_{n}=b_{k}
$$

R upper tringulur, so diegoul entries ane zero,
R his an inverse.
To solve $\quad R_{x}=b$
do you fid R^{-1} and thun wite $x=R^{-1} b$.?

$$
\begin{gathered}
{\left[\begin{array}{lll}
6 & 5 & 3 \\
0 & 4 & 2 \\
60 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
2
\end{array}\right] \quad \begin{array}{l}
A_{2}=b \\
\mathfrak{r}=A^{-1} b \\
R
\end{array}}
\end{gathered}
$$

"You do the warse without finlirg the iwese natiref "u"

$$
\begin{aligned}
x_{3} & =2 \\
4 x_{2}+2-2 & =0 \Rightarrow x_{2}=-1 \\
6 x_{1}-5+6 & =7 \Rightarrow x_{1}=1
\end{aligned}
$$

Hew could we fard R^{-1} ?

$$
\begin{aligned}
& R^{-1}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right] \\
& R R^{-1}=I \\
& R R^{-1}=\left[\begin{array}{lll}
R v_{1} & R_{v_{2}} & R_{v_{3}}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]
\end{aligned}
$$

$$
R v_{1}=e_{1}
$$

Go solve these!

$$
R v_{2}=e_{2}
$$

$$
R_{v_{3}}=e_{3}
$$

$$
\begin{aligned}
& R v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad v_{3}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
& {\left[\begin{array}{lll}
6 & 5 & 3 \\
0 & 4 & 2 \\
60 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& 6 a+5 b+3 c=0 \\
& \left.\left.4 b+2 c=0 \quad \begin{array}{l}
c=1 \\
c
\end{array}\right] \begin{array}{l}
4 b=-2 \Rightarrow b=-1 / 2 \\
6 a
\end{array}\right)=+\frac{5}{2}-3 \\
& a
\end{aligned}
$$

To fard A^{-1}
"Go solve" $A v_{k}=e_{k}$ for vectors v_{k}.
Then $A^{-1}=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$
Dor go-to technige for solving

$$
A_{x}=b
$$

when A is square ard the columns of A ane line ind is $Q R$ fectornacition,

$$
\begin{aligned}
A \rightarrow & \sqrt{Q} \vec{R} \rightarrow \text { appen tiong } \\
& A x=b \\
& Q R_{x}=b \\
& Q^{\top} Q R_{x}=Q^{\top} b \\
& R x=Q^{\top} b \\
& \rightarrow \text { solve this be ortlo namend. } \\
&
\end{aligned}
$$

