Soling Liner Systems

m equations for n of unknowns
$m<n$, A wide, fewer equations then unknowns under determined
$u n>n$, A tall, more equations then orknauns overdetermined
$m=n$, A sque, Goldilocks
sume \# of aqutiars as conkraung
$m=n=1$

$$
a x=b \quad a, b \in \mathbb{R} \quad L^{\frac{1}{a}=a^{-1}}
$$

$$
\underbrace{a^{-1} a} x=a^{-1} b
$$

malteniratue woesc

$$
1 x=a^{-1} b
$$ of a

$$
a^{-1} a=1
$$

$$
x=a^{-1} b
$$

$$
A^{-1} A=I
$$

A " $A^{-1 "}$

Matrices have a notion of multiplicative worse but we read to keep truck of the difference between left and right．
Let A be a matrix．
We say X is a left inverse of A it

$$
X A=I
$$

We sum X is a night mess of A if

$$
A X=I
$$

$$
X A=I
$$

$A=m \times n$ matrix．\quad 目 $\times m m \times n$ 回 \times 回

Can X also be, for this fall nutrox, a right mess?

$$
\left.m[]^{n}\right]^{m n} \quad \begin{aligned}
& \text { make?? } \\
& \\
& \\
&
\end{aligned}
$$

Hope: If you an fud a (left?, right?) inverse mush the solution of $A_{x}=b i 3$ $\operatorname{sim} d_{y} \times b$ 。

$$
a x=b
$$

$$
\begin{aligned}
& a x=b \\
& x=a^{-1} b
\end{aligned} ?
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \\
& X=\frac{1}{2}\left[\begin{array}{ccc}
0 & -6 & 4 \\
0 & 5 & -3
\end{array}\right]
\end{aligned}
$$

clam: X is a left inverse of A

$$
\frac{1}{2}\left[\begin{array}{ccc}
0 & -6 & 4 \\
0 & 5 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
34 \\
5
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

X is not a right inverse.
left muses reed ret be right inverses and vice vasa.

$$
a=5 \quad a^{-1}=\frac{1}{5}
$$

$$
\begin{aligned}
& \tilde{X}=\frac{1}{2}\left[\begin{array}{rrr}
-4 & 2 & 0 \\
3 & -1 & 0
\end{array}\right] \\
& \frac{1}{2}\left[\begin{array}{rrr}
-4 & 2 & 0 \\
3 & -1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

A matrix can hue more than one left inverse.
If a matrix hus two diffeent left muses, then it house mfurtely may:

$$
\alpha X+\beta \tilde{X}
$$

$$
\alpha+\beta=1
$$

$$
\longrightarrow a \| l l \text { left invars } \quad(H(W)
$$

We will say X is an inverse of A if

$$
X A=I \text { and } A X=I
$$

in which case we will write $X=A^{-1}$

\uparrow
is n! 1 quite justified:
con thar be more then ore inuese?

$$
\begin{array}{rl}
2 \times 2 & A
\end{array}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

- what coald yo wrang?

$$
a d-b c=0
$$

claim= this geeq really is an invese of A

$$
\begin{aligned}
\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] & =\left[\begin{array}{cc}
a d-b c & 0 \\
0 & d d-b c
\end{array}\right] \frac{1}{a d-b c} \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{a d-b}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] } & =\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right] \frac{1}{a b-b c}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

ad-br is called the determinant at $A_{1}(2 \times 2)$

$$
\operatorname{dat}(A)
$$

If $\operatorname{det}^{\prime}(A) \neq 0$ then A has an inverse. Converse is also true, but we haveit proven tat yet.

Suppose A has in inverse ${ }^{A^{-1}}$.
We want to solve

$$
A x=b
$$

If a solution exists then

two passibililiees: ore solution no solution?

You sure me b. I form $A^{-1} b$. Is this a solution?

$$
\begin{aligned}
A\left(A^{-1} b\right) & =\left(A A^{-1}\right) b A^{-1} \text { is a right } \\
& =I b=b l y \text { yep }
\end{aligned}
$$

Then $A^{-1} b$ is the are and inly solution.
(Upshot: If A hus a two sided inverse
then $A_{x}=b$ always has exactly ore solutions, and it is given by $x=A^{-1} b$.

From the above: if A hus a left inverse X then the only possible solution of $A_{x}=6$ is $x=X b$. Hewevers it need not be true that Yb is actanlly a solution.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad X=\frac{1}{2}\left[\begin{array}{rrr}
0 & -6 & 4 \\
0 & 5 & -3
\end{array}\right] \\
b=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right] \\
A_{x}=b
\end{gathered}
$$

$A_{x}=b \quad$ The solution, it it exists, is

$$
\begin{aligned}
X A_{x} & =X b \\
I_{x} & =X b \\
x & =X b
\end{aligned}
$$

$$
\frac{1}{2}\left[\begin{array}{ccc}
0 & -6 & 1 \\
0 & 5 & -3
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

If there 3 an x with $\Lambda_{x}=6$ Than $x=x 6$

$$
\begin{aligned}
& \text { Did it work? } \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
b & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]}
\end{aligned}
$$

x is a verite inverse
want $A_{x}=6$

$$
A(X b)=(A X) h=I b=b
$$

