Matris Powers
$A \cdot A=A^{2} \stackrel{\text { is squere }}{n \times n} \hat{v}^{n+n}$
$A \cdot A \cdot A=A^{3}$

Fonchar capp with itself.


$$
\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

$$
\begin{array}{ll}
A & e_{1} \rightarrow\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \\
e_{2} \rightarrow\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \\
{\left[\begin{array}{ll}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]} & A=\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
\alpha=1 / \sqrt{2} \quad A=\left[\begin{array}{cc}
\alpha & -\alpha \\
\alpha & \alpha
\end{array}\right] \quad \alpha^{2}=\frac{1}{2} \\
\begin{aligned}
& A^{2}=\left[\begin{array}{cc}
\alpha & -\alpha \\
\alpha & \alpha
\end{array}\right]\left[\begin{array}{cc}
\alpha & -\alpha \\
\alpha & \alpha
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \alpha^{2} \\
2 \alpha^{2} & 0
\end{array}\right] \\
&=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& e_{1} \rightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right. \\
& e_{2} \rightarrow\left[\begin{array}{cc}
-1 \\
0
\end{array}\right] \\
& \Leftrightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned} \\
A^{3}
\end{aligned}
$$

$$
A^{3}=A^{2} A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\alpha & -\alpha \\
\alpha & \alpha
\end{array}\right]=\left[\begin{array}{cc}
-\alpha & -\alpha \\
\alpha & -\alpha
\end{array}\right]
$$



$$
\begin{aligned}
& i^{2}=\left[\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
&=-I \\
& a+j b \& \\
& {\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] }=a I+b\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Orthogand Matries and $Q R$ Factorizutass

A suptose the cols of $A$ re ortho nomul
$A=m \times k$

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots a_{k}
\end{array}\right]
$$

$$
a_{i}^{\top} a_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

$$
a_{i}^{\top} a_{i}=\left\|a_{j}\right\|^{2}
$$

We smy $A$ is orthogonl if it is sque at its columus are orthonocmal,

$$
\begin{aligned}
& A^{\top} A= \\
& \uparrow \uparrow \begin{array}{c}
n \times n \\
n \times n
\end{array}
\end{aligned}
$$

erg, ident.ly moterx. sque. $I^{\top} I=I I=I$
e.g. pormutatian matrinos
squase
euch naw has one 1
endr colum las one 1
all other entries we zero.

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
10 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3}
\end{array}\right]
$$

2xis rotectuer matrous

$$
\begin{aligned}
& c^{c^{2}+s^{2}=1} \\
& R \\
& {\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]} \\
& q \\
& \text { orthogem }
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]
$$

$$
R^{\top} R=I
$$

$R^{2} \rightarrow$ olatim by $2 \theta$, not I


$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& e_{1} \rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& e_{2} \rightarrow\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$



If $A$ has orthonomal colums thes

$$
\begin{aligned}
& \left\|A_{x}\right\|=\|x\| \\
& \measuredangle\left(A_{x}, A_{y}\right)=\measuredangle(x, y) \\
& \left(A_{x}\right)^{\top}\left(A_{y}\right)=x^{\top} y
\end{aligned}
$$

