$$
\begin{gathered}
-x_{3}=1 \\
x_{3}=-1 \\
\left.\left[\begin{array}{ccc}
3 & 1 & 2 \\
0 & 0 & -1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{cc}
12 \\
-4 \\
8
\end{array}\right] \begin{array}{cc}
3 & 1 \\
0 & 0 \\
0 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
1 \\
4
\end{array}\right] J \text { there is a solctian! }} \\
{\left[\begin{array}{c}
2 \\
-2 \\
4
\end{array}\right] \quad \text { is anothe solutian! }}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & 1 & 2 \\
0 & 0 & -1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& 1\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Is there a solution?
How may?
If no solution what's the best we cm do. How do you find solutions?

$$
\begin{aligned}
& 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 1 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 6 \mathrm{O}_{2} \\
& \begin{array}{c}
\\
H \\
C \\
O
\end{array} \begin{array}{ll}
\mathrm{CO}_{2} & \mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}
\end{array} \quad\left[\begin{array}{ll}
0 & 2 \\
1 & 0 \\
2 & 1
\end{array}\right] \\
& \begin{array}{l}
H \\
C \\
0
\end{array}\left[\begin{array}{ll}
12 & 0 \\
6 & 0 \\
6 & 2
\end{array}\right] \\
& R \\
& p \\
& \mathrm{Smanco}_{\mathrm{an}}^{\mathrm{an}} \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{\substack{c o n+c t a t \\
H_{2} \mathrm{O}}}^{R x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}-P_{y}=0 \\
& 3 \underbrace{\left[\begin{array}{ll}
R & -P
\end{array}\right]}_{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]]_{z}^{4}+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad A_{z}=0 \\
& R_{x}-f_{y}=0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
R & -p \\
10 & 00
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0_{2} & -12 & 0 \\
0 & 2 & -1 \\
1 & 0 & -6 \\
2 & 1 & -6 \\
1 & 0 & -2 \\
1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 2 \\
1 & 0 \\
2 & 1
\end{array}\right] \quad \begin{array}{l}
10 x_{1}=6 \\
C
\end{array}\left[\begin{array}{ll}
12 & 0 \\
6 & 0 \\
6 & 2
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
6 \\
6 \\
1 \\
0
\end{array}\right]
$$

cadercheterimal $m<n$
fewer equations than ankruug \rightarrow non-uniqueress
overdetemined an $>m$
(nore equatios \rightarrow no solations

Matrex Matrex multiplication

$$
2 \times 3=2 \times 2 \rightarrow 2
$$

