Opentiars with Matices
(1) Truspose $T \quad x^{\top} y$

$$
\left.x=\begin{array}{c}
{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x^{\top}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]} \\
3 \times 1
\end{array}\right]
$$

exchunges colomus for rows

$$
\underset{\uparrow}{\left(A^{\top}\right)_{i j}}=A_{i j}
$$

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
4 & 1 & 0 \\
5 & 6 & 3
\end{array}\right]^{T}=\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 1 & 6 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\left(A^{\top}\right)_{23}=A_{32}
$$

lower triomgular
(all O^{\prime} 's aboue diapuel)

$$
\begin{aligned}
& {\left[a_{1}, \ldots, a_{k}\right]^{\top}=\left[\begin{array}{c}
a_{1}^{\top} \\
a_{2}^{\top} \\
\vdots \\
a_{k}^{\top}
\end{array}\right]} \\
& a_{1}, \ldots, a_{c} \text { n-vectors } \\
& A \text { is } m \times n \\
& {\left[\begin{array}{c}
a_{1}^{\top} \\
\vdots \\
a_{k}^{\top}
\end{array}\right]^{\top}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right]} \\
& A^{\top} \text { is } n \times m \\
& {\left[\begin{array}{l}
n 23 \\
+56
\end{array}\right]^{\top}=\left[\begin{array}{ll}
9 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]} \\
& \left(A^{\top}\right)^{\top}=A \\
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{\top}=\left[\begin{array}{ll}
A^{\top} & C^{\top} \\
B^{\top} & D^{\top}
\end{array}\right]}
\end{aligned}
$$

Addims matrizes:
sane shupe in $\times n$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{lll}
9 & 0 & 7 \\
2 & 0 & 6
\end{array}\right]=\left[\begin{array}{ccc}
10 & 2 & 10 \\
6 & 5 & 12
\end{array}\right]} \\
& (A+B)_{i j}=A_{i j}+B_{i j}
\end{aligned}
$$

Moltipleatian by scalurs

$$
\begin{aligned}
& c \in \mathbb{R} \\
& 2\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
\end{aligned}
$$

$d, c \in R \quad A, B \quad m \times n$ matices

$$
\begin{gathered}
c(A+B)=c A+c B \\
(c+d) A=c A+d A \\
c(d A)=(c d) A \\
2 a-3 b+5 c=3 \\
-a+b+2 c=5 \\
a\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+c\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
{\left[\begin{array}{ccc}
2 & -3 & 5 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]}
\end{gathered}
$$

$$
A
$$

Matrex - vector multiplication

$$
\operatorname{mn}[]_{n}^{n} \sum_{n}^{\text {must match }}
$$

1) Colum perspective
number

$$
\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n}^{\text {vector }}
$$

$$
\begin{aligned}
{\left[\begin{array}{ccc}
2 & -3 & 5 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] } & =1\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+2\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+1\left[\begin{array}{l}
5 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
3
\end{array}\right]
\end{aligned}
$$

2) Row perspective

$$
m\left[\begin{array}{c}
b_{1}^{n} \\
\vdots \\
b_{m}^{\top}
\end{array}\right]_{\underbrace{x}_{n \text { vector }}}=\left[\begin{array}{c}
b_{1}^{\top} x \\
b_{c}^{\top} x \\
\vdots \\
b_{m}^{\top} x
\end{array}\right]
$$

$b_{1} \ldots b_{m}$ a rectors

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & -3 & 5 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] }=\left[\begin{array}{l}
(2,-3,5)^{\top}(1,2,1) \\
(-1,1,2)^{\top}(1,2,1)
\end{array}\right] \\
&=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
&(A x)_{i}=\sum_{j=1}^{n} A_{i j} x_{j} \\
& \uparrow \uparrow_{m \times 4} \underbrace{}_{\text {nvectur }}
\end{aligned}
$$

result: un-vectar

