Gran Sound
Idea: stat with a collection of vectors

$$
a_{1}, d_{2}, a_{3}
$$

Weive sous to build some orthonomel vectors

$$
q_{1}, q_{2}, q_{3}
$$

With the following properties:
q_{1} is just a multiple of q_{1}
ε_{2} is a liner consinatian of a_{1} and a_{2}
q_{3} is a limes combinates of q_{1}, a_{2} and a_{3}
(And vice-versa! q_{3} is a loner combo of q_{1}, q_{2}, q_{3})

$$
\begin{aligned}
& a_{1}, a_{2}, q_{3} \\
& \tilde{q}_{1}=a_{1} \\
& q_{1}=\tilde{q}_{1} /_{\left\|\tilde{q}_{1}\right\|}<\text { vant vector. }
\end{aligned}
$$

$$
a_{2}=\tilde{q}_{2}+c q_{1}
$$

$$
\tilde{q}_{2}=a_{2}-c q_{1}
$$

goal $\widetilde{q}_{2} \perp q_{1}$
Unkrumes.
$W_{\text {ant }} q_{1}^{\top} \tilde{q}_{2}=0$

$$
\begin{aligned}
q_{1}^{\top}\left(a_{2}-c q_{1}\right) & =q_{1}^{\top} a_{2}-c q_{1}^{\top} q_{1} \\
& =q_{1}^{\top} a_{2}-c \\
c & =q_{1}^{\top} a_{2}
\end{aligned}
$$

"How munch of a_{2} is panting along q ?"

$$
q_{2}=\tilde{q}_{2} /\left\|\tilde{q}_{2}\right\|
$$

$$
\begin{array}{rlr}
\tilde{q}_{3} & =a_{3}-\underbrace{c_{1} q_{1}-c_{2} q_{2}}_{\text {unknown }} & \tilde{q}_{3}^{\top} q_{2}=0 \\
\underbrace{q_{1}^{\top} \tilde{q}_{3}}=q_{1}^{\top}\left(a_{3}-c_{1} q_{1}-c_{2} q_{2}\right) & \tilde{q}_{3} \perp q_{1} \\
\omega_{\text {nt }}=0 & q_{1}^{\top} \tilde{q}_{3}^{\top}=0 \\
& =q_{1}^{\top} a_{3}-c_{1} q_{1}^{\top}-c_{1}-c_{2} \underbrace{q_{1}^{\top} q_{2}}_{0} & q_{3}=\tilde{q}_{3} /\left\|\tilde{q}_{3}\right\| \\
c_{1} & =q_{1}^{\top} a_{3} \\
c_{2} & =q_{2}^{\top} a_{3} &
\end{array}
$$

goal: $\quad \tilde{q}_{3} \perp q_{2}$

$$
\tilde{q}_{3}=a_{3}-\left(q_{1}^{\top} a_{3}\right) q_{1}-\left(q_{2}^{\top} a_{3}\right) q_{2}
$$

a_{4}

$$
\begin{aligned}
& \tilde{q}_{4}=a_{4}-\left(q_{1}^{\top} a_{4}\right) q_{1}-\left(q_{2}^{\top} a_{4}\right) q_{2}-\left(q_{3}^{\top} a_{4}\right) q_{3} \\
& q_{4}=\tilde{q}_{4} \|_{\left\|\tilde{q}_{4}\right\|} \\
& a_{1}=\left[\begin{array}{l}
1 . \\
2 \\
1
\end{array}\right] \quad a_{2}=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right] \quad a_{3}=\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right] \\
& \left\|a_{4}\right\|=\sqrt{6} \\
& q_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{q}_{2}=a_{2}-(\underbrace{\left(q_{1}^{\top} a_{2}\right)} q_{1} \quad q_{1}^{\top} a_{2}=\frac{1}{\sqrt{6}}(4-2+3)=\frac{5}{\sqrt{6}} \\
& \tilde{q}_{2}=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}
5 \\
10 \\
5
\end{array}\right] \\
&=\left[\begin{array}{c}
19 / 6 \\
-16 / 6 \\
13 / 6
\end{array}\right] \\
& q_{2}=\frac{\tilde{q}_{2}}{\left\|\tilde{q}_{2}\right\|}=\frac{1}{\sqrt{11^{2}+16^{2}+13^{2}}}\left[\begin{array}{c}
19 \\
-16 \\
13
\end{array}\right] \\
& \text { Is } q_{2} \perp q_{1} ? \quad\left[\begin{array}{c}
19 \\
-16 \\
13
\end{array}\right]^{\top}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=19-2.16+13 \\
& \text { I } \quad\left[\begin{array}{c}
\text { 2 }
\end{array}\right]=32-32=0
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{q}_{k}=a_{k}-\left(q_{1}^{\top} a_{k}\right) q_{1}-\cdots-\left(q_{k}^{\top} a_{k}\right) q_{k-1} \\
& q_{k}=\tilde{q}_{k} /\left\|\tilde{q}_{k}\right\|
\end{aligned}
$$

Rase + repant.

$$
a_{k}=\beta_{1} q_{1}+\cdots+\beta q_{k-1}
$$

q_{1}, \ldots, q_{k-1} we liver cunbos of

$$
a_{(1,}, a_{k-1}
$$

$a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}$ is not linenly indepenclat,

Upshot: If all the as ae linearly inclependent we never hare a $\tilde{q}_{k}=0$ so we never risk dioidug by zero.
The algorithm gerentes a fall set of k's.

Converse: If one a_{k} is a liner combo of a_{1}, \ldots, a_{k-1} one can slow that $\tilde{q}_{k}=0$.

If the a's are linearly dependant, we can fest thus with Gram Schuridt:
one \tilde{q}_{k} will be zero if\& the as are linearly dependat.

$$
5 / 7-\frac{1}{7} \cdot 5 \quad 10^{-16}
$$

