Hence a_{1}, a_{2}, a_{3} are linearly inclepadart.

A reason to care about liver inclependere:
Suppose a_{1}, \ldots, a_{k} are livenly independent.
Suppose $x=\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}$
Claimiv $\beta_{j}=\hat{\beta_{j}}$
Suppose also $x=\hat{\beta}_{1} a_{1}+\cdots+\hat{\beta}_{k} a_{k}$
for all j.

$$
O=\left(\beta_{1}-\hat{\beta}_{1}\right) a_{1}+\cdots+\left(\beta_{k}-\hat{\beta}_{k}\right) a_{k}
$$

Each coefficient must be O beause the ais are Iinanly independent.

So $\beta_{1}-\hat{\beta}_{1}=0$ i.e. $\beta_{1}=\hat{\beta}_{1}$

$$
\beta_{j}=\hat{\beta}_{j} \quad j=1, \ldots, k .
$$

$$
a=\binom{1}{0} \quad b=\binom{1}{1}
$$

Clainn: ary x in \mathbb{R}^{n} is a linew canbo of a and b.

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) \quad x^{?}=\alpha a+\beta b=\alpha\binom{1}{0}+\beta\binom{1}{1} \\
&=\binom{\alpha+\beta}{\beta} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha+\beta \\
\beta
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \beta=x_{2} \quad \begin{aligned}
x_{1} & =\alpha+\beta \\
& =\alpha+x_{2}
\end{aligned} \Rightarrow \alpha=x_{1}-x_{2}
\end{aligned}
$$

$\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are livenly indepadent,

$$
\begin{aligned}
& \beta_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\beta_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0 \\
& {\left[\begin{array}{c}
\beta_{1}+\beta_{2} \\
\beta_{2}
\end{array}\right]=0 } \Rightarrow \beta_{2}=0 \\
& \Rightarrow \beta_{1}=0
\end{aligned}
$$

A collection a_{1}, \ldots, a_{k} of vectors in \mathbb{R}^{n} is called a basis for \mathbb{R}^{n} if

1) The collection is linearly ineleperdert I Not too
2) Even vector x in \mathbb{R}^{n} can be written] as a liner combo et the a_{j} s:

$$
x=\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}
$$

for sore β_{j}^{\top} 's.

If you hume a basis q_{1}, \ldots, a_{k} for \mathbb{R}^{n} then even vector in \mathbb{R}^{n} cm be witter as a rue linen combination of the $\mathrm{aj}^{\mathrm{j}} \mathrm{s}$,

$$
\begin{aligned}
& a_{1}=\left[\begin{array}{l}
1 \\
u
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { form a basis } \\
& \text { for } \mathbb{R}^{2} \\
& e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { forms a basis } \\
& \text { for } \mathbb{R}^{2}
\end{aligned}
$$

Fads:
A) If a_{1}, \ldots, a_{k} are linearly inderuadeat on \mathbb{R}^{n} then $k \leq n$.
B) If a_{1}, \ldots, a_{k} are vectors in \mathbb{R}^{n} ad $k<n$ then these is a vector $x \in \mathbb{R}^{1}$ that is not a liner combo at the a_{k} 's.

Consequace: Every burbs for \mathbb{R}^{n} hus a vectors

Consequence
Obsecventioni Suppose a_{1}, \ldots, a_{n} are hiemerly independent vectors in \mathbb{R}^{n}. Then they form a basis for \mathbb{R}^{n}.
let $x \in \mathbb{R}^{n}$.
The collection a_{n}, \ldots, a_{n}, x huns $n+1$ vectors in \mathbb{R}^{n}. So it is limals dependent.
So there are coefficiats $\beta_{8,}, \beta_{n+1}$

$$
\beta_{1} a_{1}+\beta_{2} a_{2}+\cdots+\beta_{n} a_{n}+\beta_{n+1} x=0
$$

withe not all $\beta_{j}^{\prime} s=0$.
Becuuse the oj's are lirenly independent β_{n+1} must be non zero.

Then $x=-\frac{\beta_{1}}{\beta_{n+1}} a_{1}-\cdots-\frac{\beta_{n}}{\beta_{n+1}} a_{n}$.
So x is a liver combination of the a;' s.
n linearly independent vectors in \mathbb{R}^{n} ave a basis for \mathbb{R}^{n}
E.g: $\quad a_{1}=\left[\begin{array}{c}1.2 \\ -2.6\end{array}\right] \quad a_{2}=\left[\begin{array}{l}-0.3 \\ -3.7\end{array}\right]$

To shaw these form a basis I reed to shew they are livery undepadat.

$$
\begin{aligned}
& \beta_{1} a_{1}+\beta_{2} a_{2}=0 \quad \text { job: } \quad \beta_{1}=\beta_{2}=0 \\
& \beta_{1} \cdot 1,2+\beta_{2}(-0.3)=0 \quad \text { Execase: } \beta_{1}=\beta_{2}=0 \\
& \beta_{1} \cdot(-2,6)+\beta_{2}(-3,7)=0
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=\left[\begin{array}{c}
1.2 \\
-2.6
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
-0.3 \\
-3.7
\end{array}\right] \\
& x=\left[\begin{array}{c}
4 \\
-7
\end{array}\right] \quad x=\beta_{1}\left[\begin{array}{c}
1.2 \\
-2.6
\end{array}\right]+\beta_{2}\left[\begin{array}{l}
-0.3 \\
-3.7
\end{array}\right]
\end{aligned}
$$

for sine β_{1}, β_{2}

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

We say a collection of vectors is or thosonal

$$
a_{1}, \ldots, a_{k}
$$

if $a_{j}^{\top} a_{i}=0$ if $j \neq i$. (the vectors ae mentally.

The collection is or thonomal if in addition

$$
\left\|a_{j}\right\|=1 \text { for all } j
$$

$$
a_{i}^{\top} a_{i}=\|a\|^{2}
$$

$$
a_{j}^{\top} a_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

