$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

f is a linar function

$$
\begin{aligned}
& \text { [1) additw.Ly } f(x+y)=f(x)+f(y) \\
& \text { 2) } \quad f(c x)=c f(x) \\
& {\left[\text { superpositian } f\left(\alpha x+\beta_{y}\right)=\alpha f(x)+\beta f(y)\right.} \\
& x=(1,3) \quad \alpha=5 \\
& y=(-2,6) \quad \beta=-2 \\
& f(\underbrace{s(1,3)-2(-2,6)}_{f(9,3)})=5 f(1,3)-2 f(2,6)
\end{aligned}
$$

$$
\begin{aligned}
& f(1,3)=19 \\
& f(5,15)=f(5(1,3))=5 f(1,3)=5 \cdot 19 \\
& 5 \cdot 1,5 \cdot 3
\end{aligned}
$$

[Then exists a vector c such tint

$$
\begin{aligned}
& f(x)=c^{\top} x \\
& f(x)=\underbrace{45 \cdot x}_{\uparrow}
\end{aligned}
$$

$$
f: \mathbb{R}^{s} \rightarrow \mathbb{R}
$$

Affine:

$$
f(\alpha x+\beta,)=\alpha f(x)+\beta f(y)
$$

$$
\text { Af } \alpha+\beta=1
$$

$$
\begin{aligned}
f(\alpha x & \left.+\beta_{y}+\gamma_{z}\right) \\
& =\alpha f(x)+1 f\left(\beta_{y}+\gamma_{z}\right) \\
& =\alpha f(x)+\beta f(y)+\gamma f(z)
\end{aligned}
$$

$$
f\left(\alpha x+\beta_{y}+\gamma_{z}\right)=\alpha f(x)+\beta f(y)+\gamma f(z)
$$

ff $\alpha+\beta+\gamma=1$
assume
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, linear

$$
f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \text { liner }
$$

underestad linen functrais like this What is the vier stanctere of those maps? Given sone $y \in \mathbb{R}^{n}$ can real solve $f(x)=y$? If you coan't what's a best possible almost solution?

Applications (ODEs, Markov chairs)

$$
f(x)=y
$$

\mathbb{R}^{2}

$$
\begin{aligned}
& a=(1,0) \\
& b=(1,1) \\
& c=(0,1)
\end{aligned}
$$

Any vector in \mathbb{R}^{2} car be written in the form

$$
\begin{gathered}
\alpha a+\beta b+\gamma c \\
(5,7)=5 \cdot b+2 c=(5,5)+(0,2)=(5,7)
\end{gathered}
$$

$$
\begin{aligned}
& (5,7)=5 a+7 c \\
& 0=\underbrace{-5 a+5 b-5 c y}_{\longleftrightarrow \text { "redudamy" }}
\end{aligned}
$$

too. nay vectors to be a Effrciat descraptias of other

Def: Let $a_{1}, a_{2}, \ldots, a_{k}$ be vectors in \mathbb{R}^{n} ?
The collection is linearly dependant if there exist number $\beta_{1}, \beta_{2}, \ldots, \beta_{t}$ not all zero such that

$$
\beta_{1} a_{1}+\beta_{2} a_{2}+\cdots+\beta_{k} a_{k}=0 .
$$

So: $a=(1,0), b=(1,1), c=(0,1)$ are linearly deperdat,

$$
\begin{aligned}
a-b & +c=0 \\
c & =b-a \\
b & =a+c \\
a & =c-b
\end{aligned}
$$

A collection a_{1}, \ldots, a_{k} is linearly dependant Afore of the $a_{j}^{?} \mathrm{~cm}$ be written as a liner combination of the otters.

$$
\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}=0
$$

If $\beta_{1} \neq 0 \quad a_{1}=-\frac{1}{\beta_{1}}\left[\beta_{2} a_{2}+\beta_{3} a_{3}+\cdots+\beta_{k} a_{2}\right]$

A collection a_{1}, \ldots, a_{k} is limerly indepentent if it is not livarly dependert.
lindep.
ح
Thue exist $\beta_{1}, \ldots, \beta_{k}$, not all zero, with $\beta_{1, \alpha_{1}} \cdots+\beta_{k} q_{k}=0$
linerly indepuenct: if you hue sumbers

$$
\beta_{1} a_{1}+\beta_{2} a_{2}+\cdots+\beta_{k} a_{k}=0
$$

hen $\beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$.

$$
a_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \quad a_{3}=\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]
$$

Show tht a_{i}, a_{2}, a_{3} ae inenly dependat.
Job: a) find $\beta_{1}, \beta_{2}, \beta_{3}$, not all zero, $\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{3}=0$ or wirte are of the vectars as a linew conbo
b) of the othes
a)

$$
\begin{gathered}
\beta_{1}=1, \quad \beta_{2}=1, \quad \beta_{3}=-1 \\
a_{1}+a_{2}-a_{3}=0
\end{gathered}
$$

b) $\quad a_{3}=a_{1}+a_{2}$

$$
\begin{aligned}
& a_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right] \quad \begin{array}{c}
a_{1}+a_{2}=0 \\
\uparrow
\end{array} \quad \begin{array}{l}
a_{1}=-a_{2} \\
a_{1}=\cdots \quad a_{2}=\cdots \quad a_{3}=0 \\
0 \cdot a_{1}+0 \cdot a_{2}+1 a_{0}=0 \\
a_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad a_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
\end{array} .
\end{aligned}
$$

Claim these are linearly independent.

Need to shews that if

$$
\begin{aligned}
& \beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{3} a_{3}=0 \quad \text { then } \\
& \beta_{1}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\beta_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\beta_{3}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=0 \\
& \beta_{1}=\beta_{2}=\beta_{3}=0 \\
& {\left[\begin{array}{c}
\beta_{1}+\beta_{2}+\beta_{3} \\
-\beta_{1}+\beta_{3} \\
\beta_{1}+\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& \beta_{1}+\beta_{2}+\beta_{3}=0 \longleftrightarrow \Rightarrow \beta_{3}=0 \\
&-\beta_{1}+\beta_{3}=0 \\
& \beta_{1}+\beta_{2}=0
\end{aligned} \begin{aligned}
& \Rightarrow \beta_{1}=0
\end{aligned}
$$

Hence a_{1}, a_{2}, a_{3} are linealy indepadert

