$$
=\left[\frac{n}{n}\right]^{1 / 2}=\sqrt{1}=1
$$

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

\rightarrow retoms on an investmant for ench time perizl.
$\operatorname{avg}(x)$ "expected reton on investment in a sivple peiad"
std (x) "expectad deviatian frum the aveage"!
\rightarrow risk of investmant
reton

$$
\begin{aligned}
\operatorname{std}(x) & =\operatorname{rms}(x-\arg (x) 1) \quad \operatorname{rms}(y)=\frac{\|y\|}{\sqrt{n}} \\
\operatorname{std}(x)^{2} & =\operatorname{rms}(x-\arg (x) 1)^{2} \quad y^{\top} y=\|y\|^{2} \\
& =\frac{\|x-\arg (x) 1\|^{2}}{n} \\
& =\frac{1}{n}\left[(x-\operatorname{aug} x 1)^{\top}(x-\operatorname{aug}(x) 1)\right] \\
& =\frac{1}{n}\left[x^{\top} x-\operatorname{augx} x^{\top} 1-\operatorname{aug} x 1^{\top} x+\operatorname{aug}(x)^{2} 1^{\top} 1\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n}\left[\|x\|^{2}-2 \operatorname{avg}(x){x^{\top} 1}^{\top}+\arg (x)^{2} \cdot n\right] \\
& =\frac{1}{n}\left[\|x\|^{2}-2 \operatorname{avg}(x) n \operatorname{ang}(x)+n \arg (x)^{2}\right] \\
& =\frac{1}{n}\left[\|\alpha\|^{2}-n \operatorname{aug}(x)^{2}\right] \\
& \begin{aligned}
x^{\top} 1 & =x_{1} \cdot\left|+x_{2} \cdot 1+\cdots+x_{n}\right| \\
& =x_{1}+x_{2}+\cdots+x_{n}
\end{aligned} \longrightarrow_{\square}^{\longrightarrow}=\frac{\| \|^{2}}{n}-\operatorname{avg}(x)^{2} \\
& =n \operatorname{avg}(x)=\operatorname{sins}(x)^{2}-\operatorname{avg}(x)^{2} \\
& \operatorname{std}(x)^{2}=\operatorname{rass}(x)^{2}-\operatorname{aug}(x)^{2} \\
& \operatorname{rms}(x)^{2}=\arg (x)^{2}+\operatorname{std}(x)^{2}
\end{aligned}
$$

Ansles between vectors.

Caudy-Sohuasts Inequaluty

$$
\begin{aligned}
& x, y \in \mathbb{R}^{n}< \\
& \left|x^{\top} y\right| \leqslant\|x\|\|y\| \quad \text { (stant if } x \text { and }
\end{aligned}
$$ y are not porallel)

We can prave the trimple inequality;

$$
\begin{aligned}
& \rightarrow\left\|\left\|_{\alpha+y}\right\|_{1} \leqslant\right\|_{\alpha}\|+\|+\| \\
& \|x+y\|^{2}=(x+y)^{\top}(x+y) \\
& =\|x\|^{2}+2 x^{\top} y+\|y\|^{2} \underbrace{\text { C-S in aquality }}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\|x\|^{2}+2\left\|_{x}\right\|\left\|_{y}\right\|+\|y\|^{2} \\
& =\left(\|x\|+\left\|_{y}\right\|\right)^{2} \\
\|x+y\| & \leq\|x\|+\|y\|
\end{aligned}
$$

Suppose u, v are vectors and $\|a\|=\|v\|=1$
"Quit vectors"

$$
\begin{array}{ll}
\sim \mid \leqslant u^{\top} v \leqslant 1 & \left|u^{\top} v\right| \leqslant\|u\| \cdot\|v\|=1 \cdot 1=1 \\
L(u, v)=\arccos \left(u^{\top} v\right) & \cos \theta \\
\text { between } u \text { and } v^{\prime \prime}
\end{array}
$$

$$
\begin{aligned}
& u=v \\
& u^{\top} \cdot v=v^{\top} v=\|v\|^{2}=1 \\
& \arccos \left(\omega^{\top} v\right)=\arccos (1)=0 \\
& L(u, v)=0 \\
& u=-v \\
& u^{\top} v=(-v)^{\top} v \\
& =-1 v^{\top} v \\
& =-1 \cdot\|v\|^{2} \\
& =-1 \\
& \arccos (-1)=\pi \quad \angle(u, v)=\pi \quad\left(180^{\circ}\right) \\
& v=(0,1) \uparrow \quad \angle(u, v)=\pi / 2 \\
& u=(1,0) \\
& u^{\top} v=1.0+0.1=0 \\
& \operatorname{arcos}(0)=\pi / 2
\end{aligned}
$$

What about arbatry vectors $x, y \quad x \neq 0 \quad y \neq 0$

$$
\begin{aligned}
u & =\frac{x}{\|x\|} \quad v=\frac{y}{\| y y} \\
\|u\| & =\left\|\frac{x}{\|x\|}\right\| \\
& =\left|\frac{1}{\|x\|}\right|\|x\| \\
L(x, y)=L(u, v) & \\
& =\frac{\|x\|}{\|x\|}=1
\end{aligned}
$$

$$
x^{\top} y=\|x\|\|y\| \cos (\theta)
$$

$$
\begin{aligned}
& x=(1,2,1,-2) \\
& y=(4,1,3,2)
\end{aligned}
$$

What in the angle between x and y ?

$$
\theta=\arccos \left(\frac{1}{2 \sqrt{3}}\right)
$$

