f

$$
\hat{f}(x)=f(w)+(\nabla f)^{\top}(x-w)
$$

If we are approximating f at $w=0$
and if $f(0)=0$ this becomes

$$
\hat{f}(x)=(\nabla f)^{\top} x=c_{1} x_{1}+c_{2} x_{k}+\cdots+c_{n} x_{1}
$$

Sag was an approxinotion \hat{s} vs trues

$$
\hat{s}\left(m_{1}, m_{3}\right)=c^{\top} m
$$

The sensituition we ∇_{s}

$$
\begin{aligned}
& \xrightarrow{\stackrel{0}{35}^{\underbrace{x_{65}}_{65}} \underbrace{(0,0, \ldots, 0)}_{35}} \\
& 1_{34}^{\top} x_{65: 99} \\
& {\left[\begin{array}{c}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]\left(\begin{array}{l}
\left.o_{(65)}\right) \\
1(25) 4
\end{array}\right.} \\
& x, y \\
& (x, y) \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \\
& c=(0,0,1,1) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& c^{\top} \cdot x=0 \cdot x_{1} \\
& \text { *0. } x_{2} \\
& 1 \times 3 \\
& 14
\end{aligned}
$$

Linar Ragression
Suppose we want to prediot concul incune of a person based an certain features

1) good from HS $\quad y / u \rightarrow 1$ or 0
2) grad fan enivesity $4 / n \rightarrow 1 \circ 0$
3) hus a prost-gnd desce) y/u $\rightarrow 1$ or θ cert.
4) are over 20 yeus old $\rightarrow \#$

A model:
hat is predictal (ncome) \rightarrow contas Fentues parnctors
dollars

$$
b=\left(b_{1}, b_{2}, b_{3} b_{4}\right)
$$

\checkmark is a number
b, is expeentan add(ional amul

$$
\begin{aligned}
& {[\hat{y}]=\text { dollars }} \\
& {[v]=\text { dollars }} \\
& \longrightarrow \text { inc one at a } 20 \text { y ladd }
\end{aligned}
$$

whe didint gnent fuen HS, ete.
income for suduatry HS

$$
\left[h_{4}\right]=\text { dallater /year addion incrome }
$$ for getting older by dre yeur

regression: predictory a real number
Chapter 3 Nouns + Distance (+Arles!)

for is $(3,7)$
fun $(0,0)$?

$$
\sqrt{7^{2}+3^{2}}=\sqrt{58}
$$

dist: $\quad x^{2}+y^{2}+z^{2}$

$$
\|x\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

\uparrow
\mathbb{R}^{n} The Euclidean nom of the vector x.
If is a measure of the size of x. "distance fem x to O "

$$
\begin{aligned}
& x=(1,2,1,-4) \\
& \quad\|x\|=(-4)^{2} \\
& \left.\left.\quad 1^{2}+2^{2}+1^{2}+4^{2}\right)\right)^{1 / 2}=\sqrt{22}
\end{aligned}
$$

Some properties of the nom $\sqrt{x_{1}^{2}+\cdots+y_{1}^{2}}$

$$
\text { (1) } \quad\|x\| \geqslant 0
$$

(2)

$$
\begin{aligned}
& \|x\|=0 \Leftrightarrow x=0 \quad \underbrace{x_{1}^{2}+\cdots}_{\geqslant 0} \underbrace{+x_{1}^{2}}_{\geqslant 0}=0 \\
& \quad \begin{aligned}
&\|7 x\|=7\|x\| \\
& x_{1}^{2}=0 \Rightarrow x_{1}=0
\end{aligned} \\
& \begin{aligned}
&\left.\left(7 x_{1}\right)^{2}+\left(7 x_{2}\right)^{2}+\cdots+\left(7 x_{n}\right)^{2}\right)^{1 / 2} \\
&=\left(7^{2} x_{1}^{2}+7^{2} x_{2}^{2}+\cdots+7^{2} x_{1}^{2}\right)^{1 / 2} \\
&=\left(7^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{1}^{2}\right)\right)^{1 / 2} \\
&=\left(7^{2}\right)^{1 / 2}\|x\| \\
&=7\|x\|
\end{aligned}
\end{aligned}
$$

(3) $\|\alpha x\|=|\alpha|\|x \mid\| \quad \alpha \in \mathbb{R}$

$$
\left(\alpha^{2}\right)^{1 / 2}=|\alpha|
$$

(4) $\|x+y\| \leq\|x\|+\|y\|$

"Triungle in oqulity"

$$
\left[\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2}+\cdots+\left(x_{1}+y_{1}\right)^{2}\right]^{1 / 2}
$$

A nomn is a thuy that satisfies popeaties (1)-(4). The text defaults to the Euclidan nomn.

