
Math F314: Linear Algebra Lab 3: Fourier Basis

Overview

A time series is a sequence ofmeasurementsmade over time, typically at equally spaced time
intervals. For example:

• Temperature at Fairbanks International Airport measured every hour.

• Atmospheric pressure at the surface of a microphone measured 44100 times a second.

• Population size of a herd of caribou measured monthly.

A�er making N such measurements, we obtain an N-dimensional vector. Its �rst compo-
nent is the �rst measurement, and its last component is the last measurement. In this lab we
will examine a basis for RN that is useful for analyzing time series data.

Before starting this lab, you will need the data �le lab3.mat which can be downloaded
from the course web pages. �e �rst cell in the lab notebook loads this �le and creates
three variables from it, data16, data256 and data sound. You should execute this cell
�rst before preceding with the lab.

Exercise 1: �e variable data16 contains 16 measurements. To visualize it, we don’t think
of it as a geometric vector in R16. Instead, we plot the measurements as a function of time
(or of the sample index). Do this in the notebook.

Exercise 2:We can express data16 in terms of the standard basis for R16:

data16 = x1e1 +⋯xnen .

What is the speci�c value of x5 in this case?

Exercise 3: Many time-series measurements can be thought of as a sum of oscillations at
di�erent frequencies. For example, a caribou population can be expected to oscillate over a
period of one year due to annual season changes, but might also undergo oscillations over a
��y-year time period due to longer-term e�ects.

In this labwewill look at a basis forRN that allows us to pick data apart into pieces oscillating
at di�erent frequencies. To begin, we need a nice way to represent the times corresponding
to the measured data samples. We will scale time so that the measurements occur over the
time interval [0, 1]. If there are N samples, we will break this interval up into N subintervals.
Andwewill assume that each sample occurs at themiddle of its corresponding time interval.

Under these hypotheses, write down the sample times for N measurements in the following
cases: N = 1, N = 2, N = 3, and N = 4. In the N = 4 case, also draw a schematic diagram
of the interval [0, 1] broken into time intervals, with each of the sample times marked with
an asterisk. Attach these hand computations along with your diagram at the end of your lab
report PDF submission.

Exercise 4: Write down a formula for sample time tk assuming that there are N samples,
starting at k = 1 and ending at k = N . You can enter the formula into a Markdown cell in the
notebook, or as part of your hand computations.
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Exercise 5: Write a function sample times(N) that returns a vector of length N of sam-
ple times corresponding to the formula you developed. I’ve started the function for you,
and you just need to �ll in a single line of it. Test that your function works by computing
sample times(4) and verifying that it gives the correct times.

Exercise 6:Make a variablet16 = sample times(16). �enmake a plotPlots.plot(t16,
data16). What is di�erent about this plot and the one you made in Exercise 1?

Exercise 7: Plot each of the following vectors:

• g1 = cos.( 0 * pi * t16 )

• g2 = cos.( 1 * pi * t16 )

• g3 = cos.( 2 * pi * t16 )

• g4 = cos.( 3 * pi * t16 )

• g5 = cos.( 4 * pi * t16 )

Plot all the series in a single plot, and ensure that there is a legend with appropriate labels of
g1 through g5.

Exercise 8: In general, let gk = cos.((k − 1) * pi * t16). What is the period of gk,
assuming time is measured in seconds? What is the frequency?

Exercise 9: Plot g17. �en explain what you see. A full answer does not just describe the
graph, but also gives an explanation for why it is what it is. Be sure you look at the scale on
the y-axis. It might be helpful to compare the graph of g17 to some of the earlier gk’s. Keep
in mind that the diameter of the nucleus of a gold atom is about 10−14 meters.

Exercise 10:We will now show that the 16 vectors g1 through g16 form a basis for R16. �e
�rst step is to make a matrix G such that column k of G is gk. Here’s a slick way to do this
using the outer product. Let

T = t16 ∗ (0 ∶ 15)′ ∗ pi.
�is is the product of the column vector t16with the row (0:15)’ to make a 16× 16 matrix,
and then scaled by π.

How is column k of T related to t16? Write down a one-line Julia command that builds the
matrix G out of the matrix T. Verify for yourself that you have the right matrix by comparing
the plots of G(:,1), G(:,2), G(:,3), and G(:,4) with those of g1, g2, g3, g4.

Exercise 11: Since G is a 16 × 16 matrix, its columns form a basis for R16 if its columns are
linearly independent. We can check for linear independence by performingQR factorization
and verifying that the diagonal elements of R are all nonzero. Because we are working with

oating point arithmetric, we’ll need to check that the entries are all “far from” zero instead.

Follow the instructions in the notebook to compute the QR factorization and then extract
the diagonal elements of R.
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Exercise 12: Since the gk’s form a basis forR16, every vector b inR16 can be written uniquely
in the form

b = x1 g1 +⋯ + x16 g16
for certain scalars x1, . . . , x16. To get a feeling for what a representation of this type means,
plot for yourself 3*g1 + 1/2*g4 - 1/8*g10. You can do this using

b = 3 ∗ G[∶, 1] + (1/2) ∗ G[∶, 4] − (1/8) ∗ G[∶, 10]
Plots.plot(t16, b)

What part of the resulting graph does the term 3*g0 contribute? What about 1/2*g3? What
about -(1/8)*g10? You might �nd it easiest to answer these questions by making (for
yourself) graphs that exclude one or more of the three terms.

Exercise 13: Suppose we want to �nd scalars xi such that

data16 = x1 g0 +⋯ + x16 g15.
Write this problem down as a matrix problem involving G.

Exercise 14: To solve this problem we would normally use a method like QR factorization.
But in this case, G has a very nice inverse. Compute G’*G and then describe all of the entries.
You should see that most entries are essentially zero. �e notebook shows you a technique
for replacing numbers in a matrix that are close to zero with numbers that are exactly zero.
You might want to do that �rst before doing your analysis.

Be careful: one entry is di�erent from all the others. �is exercise shows that G−1 is nearly
the same as GT .

Exercise 15: What is the value of the dot product gi ⋅ g j? Your answer should depend on i
and j. Give an explicit formula. Hint: this has something to do with the previous Exercise.

Exercise 16: Find a diagonalmatrix S such that F = G ∗ S satis�es F−1 = FT . Using thismatrix,
create the matrix F and verify that F’*F is essentially the identity. How is each column of F
F related to the corresponding column of G? Why are we multiplying G on the right and not
on the le�?

Exercise 17:�e columns of F are known as the Fourier basis forR16. �ey are better-scaled
vectors from the original basis g1 through g16 you were working with before. I’ll use the
notation f1 through f16 to denote this new basis.

Given a vector d in R16 we can write

d = x1 f1 +⋯ + x16 f16
for unique numbers x1 through x16. To compute these numbers, we would need to solve

F ∗ x = d.
But since F−1 = FT , the solution is simply

x = F′ ∗ d.
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�e vector x is called the Fourier transform of d.

Plot the Fourier transform of data16.

By the time you get to the end of the lab, you’ll have a good intuition about what this plot
means.

Exercise 18: If I give you the Fourier transform x, how can you reconstruct d using F? Do
so.

Exercise 19: Let x = F’ * data16 be the Fourier transform of data16. We want to exam-
ine what happens as we build up data16 from x by adding more and more terms. �at is,
we want to consider the vectors

y1 = x[1] ∗ F[∶, 1]
y2 = x[1] ∗ F[∶, 1] + x[2] ∗ F[∶, 2]
y3 = x[1] ∗ F[∶, 1] + x[2] ∗ F[∶, 2] + x[3] ∗ F[∶, 3]

and so forth.

Create the variables y1, y3, and y5 according to the formulas above. �e visualize them (for
yourself) as follows:

plot(t16, [data16, y1, y3, y5])

�is plots the original data vector and then the three approximations obtained by adding up
the �rst view terms. Explain what you see in your plots as you addmore terms of the Fourier
basis vectors to your graphs.

Exercise 20: Enter the following Julia commands

z = copy(x)
z[9 ∶ 16]. = 0

How is z di�erent from x? �en enter the following Julia commands

w = copy(x)
w[1 ∶ 8]. = 0

How is w di�erent from x? What is w + z? What is F*w+F*z?
Exercise 21:NowexecutePlots.plot(t16, [data16,F*z,F*w],label=["data16" "F*z"

"F*w"]). What e�ect does leaving out early terms from the Fourier basis have? What e�ect
does leaving out later terms have?

Exercise 22: Enter the following Julia commands to create a new vector x and the corre-
sponding time series d. Note that we are starting from a Fourier transform and going back
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to create a time series.

x = zeros(16)
x[2] = 1
x[15] = −.5
d = F ∗ x

Plot the Fourier transform x and separately plot the data vector d. Notice that data vector
is a sum of a low frequency component and a high frequency component. How can you tell
this by looking at the graph of the Fourier transform x?

Exercise 23:�e data vector data256 contains 256 measurement samples. Plot it and ob-
serve that it is a low frequency signal that has been contaminated with noise.

Exercise 24: Construct the 256× 256 matrix F256 corresponding to the 16× 16 matrix F we
have been working with. You should give commands to make

• T256 corresponding to T

• G256 corresponding to G

• S256 corresponding to S

• F256 corresponding to F

If this has all worked correctly, then F256’*F256 will be the identity matrix, up to round
o� error.

Exercise 25: As noted earlier, �e measurement samples in data256 have been contami-
nated by noise. We can use the Fourier transform to implement a low-pass �lter, which al-
lows low frequency components to pass through but removes high frequency components.
�is will eliminate the high frequency noise in the signal. Use F256 and its inverse to remove
much of the noise from the data. Plot of the original data and your version with the noise
removed.

Extra Credit Past Here

Exercise 26:�evector data sound contains 8820 samples corresponding to 1/5 of a second
of me trying to sing a note.

Plot data sound.

Also, for your amusement, follow the instructions in the notebook to play this very short
snippet of sound. It will sound a bit weird because it doesn’t last long, but you should be
able to detect that there is a note in there.

Exercise 27: We would like to analyze it using the Fourier basis, but the methods we have
been using are not e�cient enough. For example, the matrix F8820 would needlessly take
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up over half a gigabyte of memory. Computing

F8820′ ∗ data sound

would take roughly 88202 ≈ 108 multiplications. �is is far better than the roughly 88203 ≈
1011 multiplications required by �rst doing a QR factorization, but is still a bit large.

I need to confess at this stage I’ve been telling you a white lie. �e transform we are using
here is called the discrete cosine transform. �e Fourier transform is a similar, but more
complex object. In practice, discrete cosine transforms are computed using a fantastic algo-
rithm called the Fast Fourier Transform, which requires only O(N log(N))multiplications.
Note that 8820 log(8820) ≈ 3.5 ⋅ 104, which is dirt cheap!
You can compute discrete cosine transformations in Julia by installing the FFTW package
and using the FFTW.dct command. You can convert transform frequency data back into
time-series data using the command idct (inverse discrete cosine transform).

Do the following (assuming you still have the matrix F you computed earlier still in mem-
ory):

x16 dct = dct(data16)
x16 = F′ ∗ data16
Plots.plot(t16, x16 − x16 dct)

and verify that the vectors x16 dct and x16 are the same. �e algorithm in dct is exactly
what we have been doing (ine�ciently).

Exercise 28: Compute the discrete cosine transform x sound of data sound. Plot x sound,
and then describe the features of the plot.

Exercise 29: What is the sample rate of the audio data in data sound? Your answer should
be in Hz.

Exercise 30:What is the period in seconds and the frequency inHz of the function f4 in this
case? It might be helpful to go look at how you found your answer to Exercise 8. But keep
in mind that for that problem we assumed time was scaled so that all the data was sampled
between t = 0 and t = 1. You’ll need to adjust this scaling to get a meaningful answer because
your signal is only 1/5 of a second long.

Exercise 31: What are all of the dominant frequencies in the audio sample? �at is, what
are the frequencies associated with the spikes? What note was I trying to sing? Provide
justi�cation for your answers using the tools developed in this lab. Keep inmind your answer
to Exercise 30.

Exercise 32:�inking of the audio sample, notice that the discrete cosine transform of the
full signal is nearly zero for most of the frequencies. If we needed to transmit (or store)
this signal, we don’t really need all 8820 components of data sound. We could transmit
(or store) just 1000 numbers instead. What 1000 numbers should we store? How would
we reconstruct the signal based on those 1000 numbers? Do this! �en make a plot of the
di�erence between reconstructed and original signal.
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�is principle underliesmany techniques of “lossy compression”. High frequencies are omit-
ted with the expectation that they carry little data. �e JPEG image standard uses a two di-
mensional discrete cosine transform applied to little 8x8 tiles in the picture. �eMP3 audio
format uses a variation of the discrete cosine transform as well.

7


