This lab concerns fitting a polynomial to a number of data points. The most basic version of this operation is fitting a line to two points, a task that is old hat to you. If you have a third point, you can't fit a line to this data, but presumably a quadratic would work. A polynomial that passes through given data points is called a polynomial interpolant of the data.
The lab has a companion Jupyter notebook. Follow the instructions below and update the corresponding sections of the notebook as needed. For some problems, you will be asked to attach a hand computation to your final output. To do this, you will make a PDF of your Jupyter notebook and then attach to the end of it scanned PDF pages of your handwritten work.

Exercise 1:

To begin, let's think about that line fitting problem again. Suppose we have two points $p_{1}=$ $\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ and we would like to find the equation of a line $y=m x+b$ going through those points. Substitute these points into the equation of the line to obtain two equations for the unknowns m and b.

Exercise 2:

Suppose $p_{1}=(0.2,0.7)$ and $p_{2}=(0.8,-0.4)$. What are the equations for m and b ?

Exercise 3:

Write these equations in matrix form:

$$
A\left[\begin{array}{l}
b \\
m
\end{array}\right]=v .
$$

Explicitly write down what A and v are.

Exercise 4:

Julia has a built-in facility for solving linear systems of equations expressed in matrix form. Follow the instructions in the notebook to solve the system you wrote down in Exercise 3.

Exercise 5:

Verify the m and b you just computed work by plotting the line $y=m x+b$ as well as the two data points that defined the line. The notebook has more information on this task.

Exercise 6:

Now find the equation of a parabola $y=a x^{2}+b x+c$ passing through the points $(-1,1.5)$, $(3,32.2),(5,-42.6)$. You must
a) Record, by hand, the system of equations to solve.
b) Convert the system into a matrix system.
c) Solve the system using Julia (record the command you used and the solution).
d) Generate a plot that contains the parabola and the three points. Your x coordinate on your plot should range from $x=-2$ to $x=6$.

Exercise 7:

If you have 7 data points $\left(x_{n}, y_{n}\right)$, with all of the x_{n} 's different, these uniquely determine a polynomial of some order. What is the order? Enter your response in the notebook.

Exercise 8:

We're going to want to evaluate polynomials with given coefficients and given points. Write a function poly_eval in Julia that receives a vector of polynomial coefficients $c=\left(c_{0}, \ldots, c_{n}\right)$ and a vector of x-values, $x=\left(x_{1}, \ldots, x_{k}\right)$ and returns a vector of polynomial values $\left(p\left(x_{1}\right), \ldots, p\left(x_{k}\right)\right)$.

Follow the instructions in the notebook to write this function and test it.

Exercise 9:

For a general polynomial $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$, if you have $n+1$ data points (x_{k}, y_{k}) and you want $p\left(x_{k}\right)=y_{k}$, then you obtain $n+1$ equations:

$$
c_{0}+c_{1} x_{k}+c_{2} x_{k}^{2}+\cdots+c_{n} x_{k}^{n}=y_{k}
$$

Equivalently, the coefficients $c=\left(c_{0}, c_{1}, \ldots, c_{n}\right)$ satisfy

$$
A c=y
$$

where $y=\left(y_{1}, \cdots, y_{n+1}\right)$ and where

$$
A=\left[\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{1}^{n-1} & x_{1}^{n} \\
1 & x_{2} & \ldots & x_{2}^{n-1} & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n+1} & \ldots & x_{n+1}^{n-1} & x_{n+1}^{n}
\end{array}\right] .
$$

The matrix A is called a Vandermonde matrix. Your task: Write a function in Julia that receives a single vector $x=\left(x_{1}, \ldots, x_{n+1}\right)$ and returns the associated Vandermonde matrix. Your experience on the Homework 6 Julia problem writing Toeplitz matrices will be helpful! Do that first, if you have not done so already.

Exercise 10:

Suppose we have data points $(1,4),(2,-1),(4,7),(5,-3),(8,1),(9,-10)(11,3)$. Use your 'vandermonde' function to obtain the associated Vandermonde matrix A. Then use Julia to solve $A c=y$. Finally, plot the the polynomial along with the data points that were used to determine it.

Exercise 11:

Challenge Problem, not due

Suppose we want to make a polynomial approximation of $\cos (x)$. We know the values of $\cos (x)$ exactly at $x=0, \pi / 6, \pi / 4, \pi / 3, \pi / 2,2 \pi / 3,3 \pi / 4,5 \pi / 6, \pi$. We also know that cosine is an even function, so our polynomial should only involve terms of even order. Use Julia to find coefficients c_{0}, \ldots, c_{8} such that the polynomial

$$
p(x)=c_{0}+c_{1} x^{2}+c_{2} x^{4}+\cdots+c_{8} x^{1} 6
$$

satisfies $p(x)=\cos (x)$ for each value of x in the list above. Then generate two plots. The first shows $p(x)$ and the data points it interpolates. The second shows the error $|p(x)-\cos (x)|$ over the range $0 \leq x \leq \pi$. What is the maximum error?

