1. Text: 11.16. You can assume that A is 5×5. And don't bother with the "Does this make sense" part of the question.
2. Supplemental problem: 11.11. Hint: Consider block multiplication

$$
\left[\begin{array}{ll}
A & a
\end{array}\right]\left[\begin{array}{l}
B \\
0
\end{array}\right]=[A B+a 0]
$$

where A and B are $2 \times 2, a$ is 2×1 and the 0 is a 1×2 zero row.
3. The matrix

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
3 & -2 \\
-3 & -4
\end{array}\right]
$$

admits the $Q R$ factorization

$$
A=\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\right)\left[\begin{array}{cc}
3 & 1 \\
0 & -3
\end{array}\right]
$$

You don't need to show this. Instead, use the $Q R$ factorization to solve $A x=b$ with $b=(3,-5)$.

Note: For a matrix as small as a 2×2, we wouldn't bother with $Q R$ factorization. We would simply write down the inverse matrix and use it to solve the system. The point of this problem is for you to get a little practice with what the the steps of solving the system with $Q R$ factorization actually are, without having to do an enormous amount of arithmetic.

