1. Let

$$
a=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \quad b=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] \quad c=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right],
$$

a) Perform the Gram-Schmidt algorithm on these vectors (in this order) to determine orthonormal vectors q_{1}, q_{2} and q_{3}.
b) Write the vector $d=(1,1,1,-3)$ as a linear combination of q_{1}, q_{2} and q_{3}. Recall that because the q_{i} 's are orthonormal, the coefficients of the linear combination are given by $q_{i}^{T} d$.
c) From part (b) you know that d is also a linear combination of the vectors a, b and c. In fact, this is easy to spot. Using whatever technique you would like, write d as such a linear combination.
d) If we performed Gram-Schmidt on the collection of vectors a, b, c and d, what would have happened? Be specific in your answer.

