1. Let

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right], \quad x_{3}=\left[\begin{array}{c}
-1 \\
5 \\
4
\end{array}\right] .
$$

Show that x_{1}, x_{2} and x_{3} are linearly dependent two different ways:
a) Find coefficients $\beta_{1}, \beta_{2}, \beta_{3}$ such that $\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}=0$.
b) Write x_{1} as a linear combination of x_{2} and x_{3}.
2. Let

$$
y_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad y_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad y_{3}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] .
$$

a) Show that y_{1}, y_{2} and y_{3} are linearly independent. That is, show that if β_{1}, β_{2} and β_{3} are numbers such that $\beta_{1} y_{1}+\beta_{2} y_{2}+\beta_{3} y_{3}=0$ then, in fact, $\beta_{1}=\beta_{2}=\beta_{3}=0$.
b) Briefly explain why y_{1}, y_{2} and y_{3} form a basis for \mathbb{R}^{3}. Your answer should be one sentence.
c) Because these vectors form a basis for \mathbb{R}^{3}, and because $z=(2,1,3)$ is a vector in \mathbb{R}^{3}, there is a unique linear combination $\beta_{1} y_{1}+\beta_{2} y_{2}+\beta_{3} y_{3}=z$. Find the numbers β_{1}, β_{2} and β_{3}. This might be laborious and unpleasant. That's OK; I won't make you do stuff like this often.
3. In class I mentioned "Fact A". Your book calls this the "indepdendence-dimension inequality". It says "A linearly independent collection of n vectors has at most n elements".
a) Consider

$$
a_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad a_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad a_{3}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Explain how you know, without doing any work, that this collection is linearly dependent.
b) Because the collection is linearly dependent, it has redundancy. Exhibit this redundancy by finding three different linear combinations of the vectors that give you 0 . One of these will be super easy to find. One will take a little bit of work. Once you have that one, you can easily find infinitely many others, so locating a third will be a breeze!
c) Exhibit the redundancy differently by finding three different linear combinations of a_{1}, a_{2} and a_{3} that give you $(4,7)$. Hint: Find one linear combination that works. Then use you answer from part (a) to help!
4. Suppose w_{1}, w_{2} and w_{3} are any vectors at all in $\mathbb{R}^{1} 7$. Let $v_{1}=w_{1}-w_{2}, v_{2}=w_{2}-w_{3}$ and $v_{3}=w_{3}-w_{1}$. Show that v_{1}, v_{2} and v_{3} are linearly dependent. Hint: find an explicit linear combination that yields zero.
5. Text: 5-4
6. Text: 5-5 modified as follows. Suppose a and b are any n-vectors. Find a formula in terms of a and b for a scalar γ such that $a-\gamma b$ is perpendicular to b. Then draw a picture of a, b, and $a-\gamma b$ when $a=(0,1)$ and $b=(1,1)$.

