1. Consider the vectors $v_{1}=(1,2,1,-2)$ and $v_{2}=(1,2,3,4)$. Let V be the collection of all linear combinations of v_{1} and v_{2}. This is a two dimensional plane in \mathbb{R}^{4}. Let W be the collection of all vectors that are perpendicular to all the vectors in V. This is known as the orthogonal complement of V and is sometimes written $W=V^{\perp}$.
2. Show that if $w \in W$ then $v_{1}^{T} w=0$ and $v_{2}^{T} w=0$. Yes, this is an easy question.
3. Show that if w is a vector satisfying the two conditions $v_{1}^{T} w=0$ and $v_{2}^{T} w=0$ then in fact $w \in W$. Hint: an arbitrary element in V has the form $v=c_{1} v_{1}+c_{2} v_{2}$. Now take some dot products.
4. The set of vectors w satisfying $v_{1}^{T} w=0$ and $v_{2}^{T} w=0$ is the nullspace of a specific matrix. What is the matrix?
5. Determine the nullspace of this matrix to determine all the vectors in W.
6. A 4×4 matrix has $\operatorname{det}(A)=1 / 3$. Find $\operatorname{det}(2 A), \operatorname{det}(-A), \operatorname{det}\left(A^{2}\right.$ and $\operatorname{det}\left(A^{-1}\right)$.
7. Find two 2×2 matrices A and B with $\operatorname{det}(A)=1$ and $\operatorname{det}(B)=1$ but $\operatorname{det}(A+B)=0$. So there is no rule $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
8. Compute the determinant of

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
2 & 6 & 6 & 1 \\
-1 & 0 & 0 & 3 \\
0 & 2 & 0 & 7
\end{array}\right]
$$

by reducing to an upper triangular matrix.
5. Compute the determinant of

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 10 \\
5 & 6 & 7
\end{array}\right]
$$

by reducing to an upper triangular matrix. Note that you will need to keep track of row interchanges.
6. Find the determinant of

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]
$$

Then explain your result.
7. Compute the determinant of

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 4 & 4 \\
5 & 6 & 7
\end{array}\right]
$$

by expansion along the third row, i.e. the long formula with six terms coming from three 2×2 determinants.
8. Compute the determinant of

$$
A=\left[\begin{array}{ccccc}
5 & 1 & -1 & 2 & 1 \\
3 & 0 & 0 & 0 & 3 \\
2 & 3 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 \\
6 & 0 & 0 & 0 & 1
\end{array}\right]
$$

You'll want to choose your expansion row wisely...
9. The matrix E_{k} is a $k \times k$ matrix that is all zeros, except for the entries on or adjacent to the main diagonal, where the values are 1s. For example,

$$
E_{5}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

1. Compute $\operatorname{det}\left(E_{1}\right), \operatorname{det}\left(E_{2}\right)$ and $\operatorname{det}\left(E_{3}\right)$. Note that

$$
E_{1}=[1], \quad E_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] .
$$

2. Show that $\operatorname{det}\left(E_{5}\right)=\operatorname{det}\left(E_{4}\right)-\operatorname{det}\left(E_{3}\right)$ by expanding on the first row. You don't need to compute the number, just show that the formula holds.
3. This formula holds generally: $\operatorname{det}\left(E_{k+1}\right)=\operatorname{det}\left(E_{k}\right)-\operatorname{det}\left(E_{k-1}\right)$. Using this fact, compute E_{k} for $k=3,4,5,6,7,8$.
4. There's a pattern here! Use the pattern to compute E_{100}.
5. Compute the determinant of the matrix

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

two different ways. First, reduce to upper trianglular. Second, use expansion along the first row.

