1. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 2 & 4 & 6 \\
1 & 2 & 3 & 6 & 9 \\
2 & 4 & 5 & 10 & 17
\end{array}\right]
$$

Reduce this matrix to echelon form. Then find all solutions of $A x=0$. (That is, find pivot and free variables, and then determine the special elements of the nullspace corresponding to the free variables.)
2. For the same matrix A as in the previous problem, one solution of $A x=(1,3,6)$ is $x=$ ($5,-4,3,-2,1$). Find all solutions.
3. Suppose A is an $m \times n$ matrix and that W is an invertible $m \times m$ matrix. Show that the nullspace of A and the nullspace of $W A$ are the same as each other. What can be said about the nullspace of $W A$ instead if you don't know that W is invertible?
4. Find a 3×3 matrix F such that $F x=\left(x_{1}, x_{2}-2 x_{1}, x_{3}+4 x_{1}\right)$. Also, compute F^{-1} using any technique that seems convenient, including the method of making an educated guess!
5. Suppose A is a 3×5 matrix. Find a 3×3 matrix E_{1} such that the rows of $E_{1} A$ are as follows:

1. Row 1 is row 1 of A
2. Row 2 is row 2 of A minus twice row 1 of A.
3. Row 3 is row 3 of A plus four times row 1 of A

The matrix E_{1} is called an elimination matrix. You should find that E_{1} is lower-triangular, and that most of the interesting things happen in the first column. Also, compute E_{1}^{-1}.
6. As in the problem above, find a different elimination matrix E_{2} such that the first two rows of $E_{2} A$ are those of A, but the third row is row three of A minus 6 times row 2 of A.
7. Ok, let's go back to the matrix A of the first problem:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 2 & 4 & 6 \\
1 & 2 & 3 & 6 & 9 \\
2 & 4 & 5 & 10 & 17
\end{array}\right]
$$

Find an elimination matrix E_{1} such that $E_{1} A$ is the first step of elimination so that the first column of A is cleared below the pivot. Your matrix E_{1} will have ones on the diagonal and the only other non-zero entries will be in the first column.
8. Continuing with the previous problem, at this point you will have found that column 2 is already cleared. Yay! Find an elimination matrix E_{2} that does the work of clearing column three from here, at which point elimination will be done. That is, $E_{2} E_{1} A=B$, where B is the echelon form matrix you computed in question 1.
9. From the previous problem, we know that $E_{2} E_{1} A=B$, where B is in echelon form. That means that $A=E_{2}^{-1} E_{1}^{-1} B$. Compute each of E_{1}^{-1}, E_{2}^{-1} and the product $E_{2}^{-1} E_{1}^{-1}$. The result will be a lower triangular matrix L. There will be ones on the diagonal, and the entries below the diagonal will be closely tied to numbers you saw in the process of doing elimination.
10. Suppose you want to find a solution of $A x=(1,3,6)$. One can do this with $Q R$ factorization and the pseudo inverse. But here's another way using the factorization $A=L B$ we just formed.

- First, solve $L w=(1,3,6)$ by using forward substitution. Do this!
- Now find a solution of $B x=w$, for then $A x=L B x=L w=(1,3,6)$. To find this solution, extract the three pivot columns of B, and the result will be an uppertriangular matrix U. Great. Now use back substitution to solve $U \tilde{x}=w$. This will determine the pivot variables in \tilde{x}, and the solution x has its pivot variables from \tilde{x} and its free variables all zero. Write down the solution x you just found.

11. Your solution to $A x=(1,3,6)$ from the previous problem differs from mine, which was $(5,-4,3,-2,1)$. So the two solutions differ by an element of the nullspace. Show that this element of the nullspace really was in the nullspace you identified way back in Problem 1. The easiest way to do this will be to work with the "special" elements of the nullspace you will have identified back in Problem 1 associated with the free variables x_{2} and x_{4}.
