1. Text 12.2 Modified. Suppose that the $m \times n$ matrix Q has orthonormal columns.
a) Why do you immediately know that $m \geq n$ and hence Q is tall or square?
b) Show that $\hat{x}=Q^{T} b$ is the vector that minimizes $J(x)=\|Q x-b\|^{2}$. Do this by setting up the normal equations directly.
2. Supplemental 12.6 Hint: Your matrix A will be 6×4 and will have a lot of 0 's and l's.
3. Suppose we want to compute the coefficients of the quadratic $p(t)=c_{1}+c_{2} t+c_{3} t^{2}$ that is the least squares fit to the following (t, y) data points: $(0,0),(1,8),(3,8),(4,20)$.
4. Formulate the problem in the form of $A c=b$. That is, find the matrix A and the vector b. You don't need to solve this system.
5. Now formulate the normal equation $A^{t} A c=A^{t} b$ that you would use to find these best-fit coefficients. Again, do not solve the system. (But don't worry, there is a Julia problem that tackles this!)
6. Text: problem 12.4. Hint: you will find that the square roots of the weights are important. For part (b), remember that the columns of C are linearly independent if and only if the only solution of $C x=0$ is $x=0$.
