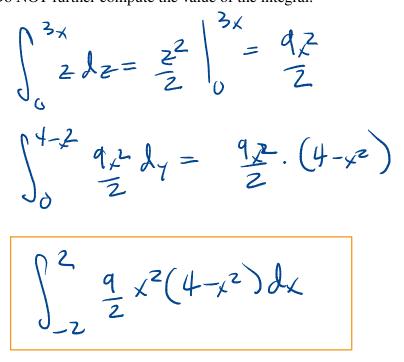

Name:

1. Let \mathcal{E} be the 3-d region bounded determined by the inequalities $0 \le z \le 3x$ and $0 \le y \le 4 - x^2$. The figure below might help with visualizing the region.


a. Write down an iterated integral in terms of x, y and z variables that is equivalent to

$$\iiint_{\mathcal{E}} z \, dV.$$

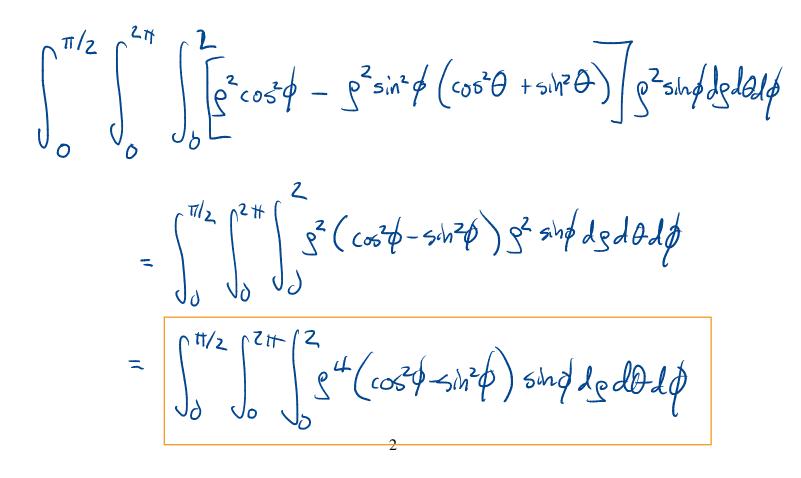
Your innermost integral should be with respect to z, and the middle integral should be with respect to y. Do NOT compute the value of the integral.

$$\int_{-2}^{2}\int_{0}^{4-x^{2}}\int_{0}^{3x} dz dy dx$$

b. For the integral you just wrote down, compute the two innermost integrals (i.e. with respect to z and then y) to reduce the triple integral to a single integral with respect to x. Do NOT further compute the value of the integral.

2. Rectangular coordinates (x, y, z) can be written in terms of spherical polar coordinates (ρ, θ, ϕ) . Simply write down what these formulas are. I.e, x = stuff involving ρ , θ and ϕ and so forth.

$$x = g sh \phi coo \theta$$


$$Y = g sh \phi sh \theta$$

$$z = g cos \phi$$

3. Let \mathcal{E} be upper half sphere { $(x, y, z) | x^2 + y^2 + z^2 \le 4$ } of radius 2 with $z \ge 0$. Write the integral

$$\iiint_{\mathcal{E}} z^2 - x^2 - y^2 \ dV$$

in terms of spherical polar coordinates (ρ, θ, ϕ) . Simplify the integrand to the extent possible, but do NOT compute the value of the integral.

