Name:

1. Recall that Green's Theorem states that for any curve C traversing the boundary (counterclockwise) of a simply connected region \mathcal{R}

$$\int_{C} P \, dx + Q \, dy = \iint_{\mathcal{R}} \left(-\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} \right) \, dA.$$

Alternatively if $\mathbf{F} = \langle P, Q \rangle$ this can be expressed

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{R}} \operatorname{curl} \mathbf{F} \, dA.$$

Use Green's theorem to compute the line integral $\int_C xy \, dx + (x - y) \, dy$ where *C* is the boundary of the triangle with vertices (0,0), (2,0) and (0,2). For full credit, your solution must employ Green's Theorem.

- **2.** Consider the region S of points (x, y, z) given by $y = 2 x^2$ and with $0 \le z \le y$.
 - a) Find a parameterization of the region $\mathbf{r}(u, v)$. You may find it useful to let *u* parameterize the *x* coordinate (in which case the *y* coordinate is also determined by *u*).

b) [Extra Credit] Write down a double integral that can be used to compute the surface area of this region. DO NOT actually compute the surface area.