Name:

1. Let \mathcal{E} be the 3-d region determined by the inequalities $y \ge 0$, $x \ge 0$, $x^2 + y^2 \le 4$ and $0 \le z \le y$. The following region in the *x*-*y* plane might help you visualize some of these inequalites.

a. Write down an iterated integral in terms of x, y and z variables that is equivalent to

$$\iiint_{\mathcal{E}} 2x \, dV.$$

Do NOT compute the value of the integral.

b. Ok, now go ahead and compute the value of the integral.

2. Rectangular coordinates (x, y, z) can be written in terms of spherical polar coordinates (ρ, θ, ϕ) . Simply write down what these formulas are. I.e, $x = \text{stuff involving } \rho, \theta$ and ϕ and so forth.

3. Let \mathcal{E} be the sphere $\{(x, y, z) \mid x^2 + y^2 + z^2 \le 9\}$ of radius 3. Write the integral

$$\iiint_{\mathcal{E}} x^2 + y^2 \ dV$$

in terms of spherical polar coordinates (ρ, θ, ϕ) . Simplify the integrand to the extent possible, but do NOT compute the value of the integral.