
MATH253X-UX1

Spring 2019
Final Exam Name: Answer Key

Instructions. You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order
to receive full credit.

1. Consider the following points in space: A(−2, 0, 1), B(1, 1,−1), and C(0, 2, 0).

(a) Find parametric equations for the line going through A and B.

Solution:
#    »

AB = 〈1 + 2, 1− 0,−1− 1〉 = 〈3, 1,−2〉
So parametric equations for the line are: 

x = −2 + 3t

y = t

z = 1− 2t

(b) Find the area of the parallelogram with adjacent sides AB and AC.

Solution: Let A be the area of the parallelogram.

#    »

AC = 〈0 + 2, 2− 0, 0− 1〉 = 〈2, 2,−1〉

#    »

AB × #    »

AC =

∣∣∣∣∣∣
i j k
3 1 −2
2 2 −1

∣∣∣∣∣∣ = 〈−1 + 4,−4 + 3, 6− 2〉 = 〈3,−1, 4〉

⇒ A =
∥∥∥ #    »

AB × #    »

AC
∥∥∥ =

√
32 + (−1)2 + 42 =

√
26

2. Assume a particle has velocity v(t) =
〈
2t, t2, 2

〉
with speed measured in ft/s.

(a) Find the position vector r(t) at all times if r(2) = 〈2, 3, 1〉.
Solution:

r(t)− r(2) =

ˆ t

2

v(u) du =

ˆ t

2

〈
2u, u2, 2

〉
du =

[〈
u2,

u3

3
, 2u

〉]t
2

⇒ r(t)− 〈2, 3, 1〉 =
〈
t2,

t3

3
, 2t

〉
−
〈
4,

8

3
, 4

〉
⇒ r(t) =

〈
t2,

t3

3
, 2t

〉
+

〈
2− 4, 3− 8

3
, 1− 4

〉
=

〈
t2,

t3

3
, 2t

〉
+

〈
−2,

1

3
,−3

〉
⇒ r(t) =

〈
t2 − 2,

t3 + 1

3
, 2t− 3

〉
(b) Find the distance traveled from t = 1 s to t = 3 s.

Solution: Let d be the distance traveled.

v(t) =
〈
2t, t2, 2

〉
⇒ ‖v(t)‖ =

√
4t2 + t4 + 4 =

√
(t2 + 2)2 = t2 + 2

⇒ d =

ˆ 3

1

‖v(t)‖ dt =

ˆ 3

1

t2 + 2 dt =

[
t3

3
+ 2t

]3
1

= 9 + 6− 1

3
− 2 =

38

3
ft
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3. Let f(x, y) = x2y2 − xy2 − x2 − 2y2 + x.

(a) Verify that (1/2, 0) and (−1, 1) are (among the) critical points of f(x, y). Then classify them using
the Second Partials Test.

Solution: We have:

∇f(x, y) =
〈
2xy2 − y2 − 2x+ 1, 2x2y − 2xy − 4y

〉
⇒ ∇f(1/2, 0) = 〈0− 0− 1 + 1, 0− 0− 0〉 = 〈0, 0〉 X

⇒ ∇f(−1, 1) = 〈2(−1)(1)− 1 + 2 + 1, 2(1)(1)− 2(−1)(1)− 4(1)〉 = 〈0, 0〉 X

So they are indeed critical points and:

fxx = 2y2 − 2 , fyy = 2x2 − 2x− 4 , fxy = 4xy − 2y

⇒ d(x, y) = fxxfyy − f2
xy = 4(y2 − 1)(x2 − x− 2)− 4(2xy − y)2

• d(1/2, 0) = 4(−1)
(
1
4 − 1

2 − 2
)
−4(0) = 9 > 0, fxx(1/2, 0) = −2 < 0 so (1/2, 0) is a local maximum ;

• d(−1, 1) = 4(0) (1 + 1− 2)− 4(−2− 1)2 = −36 < 0, so (−1, 1,−2) is a saddle point ;

(b) Find the directional derivative of f when moving from (0, 2) towards (−1, 3).

Solution:

∇f(x, y) =
〈
2xy2 − y2 − 2x+ 1, 2x2y − 2xy − 4y

〉
⇒ ∇f(0, 2) = 〈0− 4− 0 + 1, 0− 0− 8〉 = 〈−3,−8〉

v = 〈−1− 0, 3− 2〉 = 〈−1, 1〉 ⇒ u =
v

‖v‖
=

〈
− 1√

2
,
1√
2

〉

Duf(0, 2) = ∇f(0, 2) · u = 〈−3,−8〉 ·
〈
− 1√

2
,
1√
2

〉
=

3√
2
− 8√

2
= −5

√
2

2

4. Switch the order of integration then compute

I =

ˆ 4

0

ˆ 8

y
3
2

√
yex

2

dx dy

Solution: The region of integration is:

x

y

x = y
2
3 or y = x

3
2

4

1

10 8

So switching the order of integration we have:

I =

ˆ 8

0

ˆ x
2
3

0

√
yex

2

dy dx

And we compute:

I =

ˆ 8

0

ˆ x
2
3

0

√
yex

2

dy dx =

ˆ 8

0

[
2y

3
2

3
ex

2

]x
2
3

0

dx =

ˆ 8

0

2x

3
ex

2

− 0 dx =

[
ex

2

3

]8

0

=
e64 − 1

3
.
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5. Consider a particle moving along C parametrized by r(t) =
〈
t2 − 1, 2t, t

〉
, 1 ≤ t ≤ 2 through the vector

field F(x, y, z) =
〈
2xy − 1, x2 − z, 2z − y

〉
.

(a) The field is conservative. Find all potential functions.

Solution: We have that for any potential function f , F(x, y, z) = 〈P,Q,R〉 = 〈fx, fy, fz〉. So,

f(x, y, z) =

ˆ
P dx =

ˆ
2xy − 1 dx = x2y − x+ C1(y, z)

f(x, y, z) =

ˆ
Q dy =

ˆ
x2 − z dy = x2y − yz + C2(x, z)

f(x, y, z) =

ˆ
R dx =

ˆ
2z − y dz = z2 − yz + C3(x, y)

⇒ f(x, y, z) = x2y − x− yz + z2 + C

(b) Apply the Fundamental Theorem of Line Integrals to compute the circulation (work).

Solution:

r(1) = 〈0, 2, 1〉 , r(2) = 〈3, 4, 2〉

W =

ˆ
C

F · dr = f(3, 4, 2)− f(0, 2, 1)

= 9(4)− 3− 4(2) + 4− (0− 0− 2(1) + 1) = 29− (−1) = 30

6. Sketch the following:

(a) the surfaces 4x2 + 9y2 + z2 = 9 and 2x− 3y + 6z = 6 and their intersection;

Solution: We have an ellipsoid and a plane, so their intersection is elliptic in shape.

1
1

1

x

y

z

(b) the surface given in spherical coordinates by φ =
π

4
, −π

2
≤ θ ≤ π

2
, and 0 ≤ ρ ≤ 2 secφ.

Solution: The surface φ =
π

4
is the cone z =

√
x2 + y2, but only for x ≥ 0 from the θ restriction,

and for the restriction in ρ, we can rewrite 0 ≤ ρ ≤ 2 secφ as 0 ≤ ρ cosφ ≤ 2 that is 0 ≤ z ≤ 2.
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1
1

1

x

y

z

7. Consider the hyperboloid of two sheets:

x2 + 4y2 − z2 = −4

(a) Find an equation of the tangent plane to the hyperboloid at (1,−1, 3).

Solution: Let F (x, y, z) = x2 + 4y2 − z2 = −4. Then,

∇F (x, y, z) = 〈2x, 8y,−2z〉 ⇒ ∇F (1,−1, 3) = 〈2,−8,−6〉 .

And so the equation of the tangent plane is:

2(x− 1)− 8(y + 1)− 6(z − 3) = 0 or x− 4y − 3z + 4 = 0 .

(b) Sketch the level curves corresponding to z = 2 and z = 2
√
5.

Solution:

y

x
0 1

1

z = 2

z = 2
√
5

x2 + 4y2 = 0

x2 + 4y2 = 16

(c) Fully SET UP an expression with triple integrals to represent x̄ in the center of mass of the
solid bounded by the hyperboloid and the plane z = 2

√
5 if the density of the solid is given by

ρ(x, y, z) = 2y2z. DO NOT EVALUATE.
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Solution:

x̄ =

ˆ 4

−4

ˆ √
16−x2

2

−
√

16−x2

2

ˆ 2
√
5

√
x2+4y2+4

2xy2z dz dy dx

ˆ 4

−4

ˆ √
16−x2

2

−
√

16−x2

2

ˆ 2
√
5

√
x2+4y2+4

2y2z dz dy dx

8. Use Green’s theorem to find the circulation of the vector field F(x, y) = 〈yex − sinx, 2xy〉 over the closed
curve C described below:

x

y

(1, 1)

Solution: We verify that C is oriented counterclockwise. So by Green’s theorem,

W =

˛
C

F · dr =

¨
R

(2xy)x − (yex − sinx)y dA =

ˆ 1

0

ˆ 1

x

2y − ex dy dx

=

ˆ 1

0

[
y2 − yex

]1
x
dx =

ˆ 1

0

1− ex − x2 + xex dx

=

ˆ 1

0

1− x2 + (x− 1)ex dx =

∣∣∣∣ u = x− 1 du = dx
dv = ex dx v = ex

∣∣∣∣
=

[
x− x3

3
+ (x− 1)ex

]1
0

−
ˆ 1

0

ex dx = 1− 1

3
+ 0− (0− 0− 1)−

[
ex
]1
0

=
5

3
− e+ 1 =

8

3
− e

9. Let f(x, y) = (x− 1)2 + 2y2.

(a) Use the appropriate chain rule (not direct substitution) to find
∂f

∂s
for (s, t) = (2,−1) if x = 2st,

y = t2 − s.

Solution: For (s, t) = (2,−1) then (x, y) = (2(2)(−1), (−1)2 − 2) = (−4,−1). Then,

∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
= 2(x− 1)(2t) + 4y(−1)

= 2(−5)(−2) + 4(−1)(−1) = 20 + 4 = 24 .

(b) Use the gradient and Lagrange multipliers to find the absolute minimum and maximum of the
function f(x, y) = (x− 1)2 + 2y2 in the region x2 + y2 ≤ 4.

Solution: Extreme values will happen either at critical points within the region or on the boundary.

• critical point(s): ∇f(x, y) = 〈2(x− 1), 4y〉 = 〈0, 0〉 at (1, 0) which is indeed in the region (since
12 + 02 ≤ 4).
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• on the boundary g(x, y) = x2 + y2 = 4:

∇f = λ∇g , g(x, y) = 4 ⇒ 〈2(x− 1), 4y〉 = λ 〈2x, 2y〉 , x2+y2 = 4 ⇒


2(x− 1) = 2λx

4y = 2λy

x2 + y2 = 4

From the second equation, we have two cases:

– if y = 0 then from the constraint: x2 = 4 so x = ±2 and so we have the points (±2, 0);

– if y 6= 0 then λ = 2 and plugging into the first equation we have:

2x− 2 = 4x ⇒ x = −1

which when plugged into the constraint gives you y2 = 3 so y = ±
√
3 and so we have the

points (−1,±
√
3).

We now compute f(x, y) at all the points found above to find the extreme values:

x y f(x, y)

1 0 0 absolute minimum
2 0 1
−2 0 9

−1 ±
√
3 10 absolute maximum

10. Consider the surface S parametrized by

r(u, v) =
〈
u cos v, u sin v, 5− u2

〉
, 0 ≤ u ≤ 2 , 0 ≤ v ≤ 2π

and a vector field F =
〈
y, y2 − z, 3z

〉
.

x

y

z

(a) Fully set up in (u, v) the flux of the curl across the surface oriented upwards. DO NOT evaluate.

¨
S

curlF ·N dS =

ˆ 2π

0

ˆ 2

0

2u2 cos v − u du dv



MATH253X-UX1/FE – Page 7 of 8 –

Solution: First we compute:

ru × rv =

∣∣∣∣∣∣
i j k

cos v sin v −2u
−u sin v u cos v 0

∣∣∣∣∣∣ = 〈
2u2 cos v, 2u2 sin v, u

〉
,

and since the k component is nonnegative, we have the right orientation for N.
Next, we take the curl of the field:

curlF(x, y, z) =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
y y2 − z 3z

∣∣∣∣∣∣ = 〈0 + 1, 0− 0, 0− 1〉 = 〈1, 0,−1〉 ,

and since it is constant we also have curlF(r(u, v)) = 〈1, 0,−1〉. And therefore,

¨
S

curlF ·N dS =

ˆ 2π

0

ˆ 2

0

〈1, 0,−1〉 ·
〈
2u2 cos v, 2u2 sin v, u

〉
du dv =

ˆ 2π

0

ˆ 2

0

2u2 cos v − u du dv

(b) Stokes’ theorem states that: ¨
S

curlF ·N dS =

ˆ
C

F · dr

for C the boundary curve of the surface S oriented here counterclockwise. Give a parametrization
in t of C then use it to compute the line integral equivalent to the flux of the curl.

Solution: The boundary curve happens at u = 2 and so taking v = t, a parametrization of C is:

r(t) = 〈2 cos t, 2 sin t, 1〉 , 0 ≤ t ≤ 2π

where we verify that this goes counterclockwise. Then,

dr = 〈−2 sin t, 2 cos t, 0〉 dt.

And so by Stokes’ theorem,

¨
S

curlF ·N dS =

ˆ 2π

0

F(r(t)) · dr

=

ˆ 2π

0

〈
2 sin t, (2 sin t)2 − 1, 3(1)

〉
· 〈−2 sin t, 2 cos t, 0〉 dt

=

ˆ 2π

0

−4 sin2 t+ 8 sin2 t cos t− 2 cos t dt

=

ˆ 2π

0

−2(1− cos 2t) + 8 sin2 t cos t− 2 cos t dt

=

[
−2

(
t− sin 2t

2

)
+

8

3
sin3 t− 2 sin t

]2π
0

= −2(2π − 0) + 0− 0− (0 + 0− 0) = −4π

(c) Close the surface S by including the portion of the plane z = 1 that is on the bottom of S. Now use
the divergence theorem (stated below) to compute the flux of the vector field across the new closed
surface S′ as a triple integral (use cylindrical coordinates). Hint : The original surface S satisfies
z = 5− x2 − y2.

‹
S′

F ·N dS =

˚
Q

divF dV
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Solution: The divergence is:

divF(x, y, z) = Px +Qy +Rz = 0 + 2y + 3.

Now if we rewrite our solid Q in cylindrical coordinates, we have 1 ≤ z ≤ 5 − r2, and so by the
divergence theorem,

‹
S′

F ·N dS =

˚
Q

divF dV =

ˆ 2π

0

ˆ 2

0

ˆ 5−r2

1

(2r sin θ + 3) r dz dr dθ

=

ˆ 2π

0

ˆ 2

0

(2r2 sin θ + 3r)
[
z
]5−r2

1
dr dθ

=

ˆ 2π

0

ˆ 2

0

(2r2 sin θ + 3r)(4− r2) dr dθ

=

ˆ 2π

0

ˆ 2

0

8r2 sin θ − 2r4 sin θ + 12r − 3r3 dr dθ

=

ˆ 2π

0

[
8r3

3
sin θ − 2r5

5
sin θ + 6r2 − 3r4

4

]2
0

dθ

=

ˆ 2π

0

64

3
sin θ − 64

5
sin θ + 24− 12− 0 dθ

=

[
−64

3
cos θ +

64

5
cos θ + 12θ

]2π
0

= 24π .


