MATH253X-UX1 Final Exam
Spring 2019

Name: Answer Key

Instructions. You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order
to receive full credit.

1. Consider the following points in space: A(—2,0,1), B(1,1,—1), and C(0,2,0).
(a) Find parametric equations for the line going through A and B.
Solution:
AB=(1+421-0,-1—1)=(3,1,-2)

So parametric equations for the line are:

r=—-24+3t
Y= t
z= 1—-2t

(b) Find the area of the parallelogram with adjacent sides AB and AC.
Solution: Let A be the area of the parallelogram.

AC = (042,2-0,0—1) = (2,2, 1)

I | T ™
ABxAC =3 1 —2|=(-144,-443,6-2)=(3,—1,4)
2 2 -1

o A= HA_B’ x A_C’H = /324 (—1)2 + 42 :-/%

2. Assume a particle has velocity v(t) = <2t7 2, 2> with speed measured in ft/s.
(a) Find the position vector r(t) at all times if r(2) = (2,3, 1).

Solution:
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(b) Find the distance traveled from t =1 s to ¢t = 3 s.
Solution: Let d be the distance traveled.

v(t)=(26,1%,2) = [v(t)| = Va2 +t+4= /(2 +2)2 =1* +2

3

= d:/ vl dt/t2+2dt{+2t] =9+6—-—2=|2"ft
1 1 3 1 3




MATH253X-UX1/FE — Page 2 of 8 -

3. Let f(r,y) = 2%y? —ay? — 2% — 29% + 2.

(a) Verify that (1/2,0) and (—1,1) are (among the) critical points of f(x,y). Then classify them using
the Second Partials Test.

Solution: We have:
Vf(z,y) = <2xy2 —y? =22 +1,22%y — 2zy — 4y>
= Vf(1/2,00=(0—-0—-1+1,0—0—10) = (0,0) v
= Vf(-1,1)=02(-1)1)—-14+2+1,2(1)(1) —2(-1)(1) — 4(1)) = (0,0) v
So they are indeed critical points and:
fee=20* -2 | fpu=22"-20-4 | f,, =4day—2y
= d@,y) = foafyy = £2, = A" — 1)(@" -z - 2) — 420y — y)?

e d(1/2,0) =4(-1) (1 =3 -2)-4(0) =9 >0, f,2(1/2,0) = -2 <0 so\ (1/2,0) is a local maximum |;
e d(—1,1)=4(0)(1+1-2)—4(-2-1)2=-36 < 0, so ‘ (—1,1,—2) is a saddle point ‘;

(b) Find the directional derivative of f when moving from (0, 2) towards (-1, 3).
Solution:

Vf(z,y) = (2zy* — y* — 2z + 1,22°y — 22y — 4y)
= VF0,2)=(0-4-0+1,0—0—8) = (~3,-8)

v=(-1-0,3-2)=(-1,1) = u=V=<—1,1>

1 1 3 8 5v/2
Duf(O,Z):Vf(O,Z)-uz(—S,—8>~<— ,>:2— ===

4. Switch the order of integration then compute

4,8 5
I:/ ‘/3 \/gjez dxdy
0 y2

Solution: The region of integration is:

Yy
— 43 ory =
4 cr=ysory==x
So switching the order of integration we have:
2
8 3 R
14+ I:/O ; Vye' dy dx
, x
0 1 8

And we compute:

2 T 8
8 3 8 3 8 z? 64
2 2 -1
I=/ / \/ﬂe‘lc2 dy dx:/ Y? ea® das:/ Lo _0de=|S| =|¢ .
o Jo 0 3 0o 3 3 3
0
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5. Consider a particle moving along C' parametrized by r(t) = <t2 —1,2t, t>, 1 <t < 2 through the vector
field F(xz,y,2) = (2zy — 1,27 — 2,22 — y).
(a) The field is conservative. Find all potential functions.
Solution: We have that for any potential function f, F(z,y,2) = (P,Q, R) = (fs, fy, f). So,

f(x,y,z):/de:/Zzyfldx:nyf:EqLCl(y,z)
f(m,y,Z):/Q dy:/x2fzdy:x?yfyZJrCz(%Z)

f(x,y,Z)=/Rdx=/2z—yd2=z2—yZ+Cs(fE7y)

= ‘f(a:,y,z):xzy—x—yz—kzz—i-c

(b) Apply the Fundamental Theorem of Line Integrals to compute the circulation (work).

Solution:
r(1) =0,2,1) , r(2)=(3,4,2)
W:/ F.-dr = f(3,4,2) — f(0,2,1)
c

=9(4) —3—-4(2)+4—-(0-0—2(1) +1) =29 — (~1) =[30]

6. Sketch the following:
(a) the surfaces 422 + 9y* + 22 = 9 and 2z — 3y + 62 = 6 and their intersection;

Solution: We have an ellipsoid and a plane, so their intersection is elliptic in shape.

(b) the surface given in spherical coordinates by ¢ = ,and 0 < p < 2seco.

T
Za
Solution: The surface ¢ = g is the cone z = /22 + y2, but only for x > 0 from the 6 restriction,
and for the restriction in p, we can rewrite 0 < p < 2sec¢ as 0 < pcos¢ < 2 that is 0 < z < 2.
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7. Consider the hyperboloid of two sheets:

2 Ay =4

(a) Find an equation of the tangent plane to the hyperboloid at (1,—1, 3).
Solution: Let F(z,y,z) = 2% + 4y? — 22 = —4. Then,

VF(z,y,z) = (2z,8y,—22) = VF(1,—-1,3)=(2,-8,-6).

And so the equation of the tangent plane is:

2 —-1)—-8(y+1)—6(z—3)=0 or ‘x—4y—32+4=0‘.

(b) Sketch the level curves corresponding to z = 2 and z = 2v/5.

Solution:

2%+ 49y =16
T
22 +4y?2 =0

(¢) Fully SET UP an expression with triple integrals to represent Z in the center of mass of the
solid bounded by the hyperboloid and the plane z = 2+/5 if the density of the solid is given by
p(z,y,2) = 2y*2. DO NOT EVALUATE.
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Solution:

o= 22y%2 dz dy dx
/ / / Va2 tay?+4

2y22 dz dy dx
[ Ja o

8l
Il

8. Use Green’s theorem to find the circulation of the vector field F(z,y) = (ye® — sinx, 2zy) over the closed
curve C described below:
Y
(1,1)

v

Solution: We verify that C' is oriented counterclockwise. So by Green’s theorem,

W = %F dr—// 2zy), — (ye® —sinx), dA = //2y—6 dy dz
0
1
:/ [yQ—yex} dac—/ 1—e® — 2% +ze® da
0 0

1
_ 2 e g |u=z—1 du=dx
,/01 x“ 4 (x —1e dx*dvzexdx v — ot

1

x3 ! 1
[x 3 + (z—1)e ]0 /0 e* dr 3+O (0-0-1) [e }0

©

. Let f(z,y) = (z — 1)% + 292,
aof

B for (s,t) = (2,-1) if z = 2st,

(a) Use the appropriate chain rule (not direct substitution) to find
y=1t>—s.
Solution: For (s,t) = (2,—1) then (z,y) = (2(2)(-1),(=1)? — 2) = (=4, —1). Then,
af 3f or Of 8y

s — B2 Bs + = 3y Ds =2(z —1)(2t) + 4y(—1)

=2(=5)(=2) +4(=1)(=1) =20+ 4 = | 24]|.

(b) Use the gradient and Lagrange multipliers to find the absolute minimum and maximum of the
function f(x,y) = (x — 1)2 + 232 in the region 22 + y? < 4.
Solution: Extreme values will happen either at critical points within the region or on the boundary.
e critical point(s): Vf(z,y) = (2(z — 1),4y) = (0,0) at (1,0) which is indeed in the region (since
12 40% < 4).
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e on the boundary g(z,y) = 2% +y? = 4

2z —1)=2x\z
Vi=AVg, glz,y) =4 = (2x—1),4y) =A(22,2y) , 2’ +y* =4 = (dy=2
2?2 +y?=4

From the second equation, we have two cases:
— if 5 = 0 then from the constraint: 22 = 4 so x = +2 and so we have the points (42, 0);
—if y # 0 then A = 2 and plugging into the first equation we have:

e —2=4zr = zx=-1

which when plugged into the constraint gives you y? = 3 so y = ++/3 and so we have the
points (—1,+v/3).
We now compute f(x,y) at all the points found above to find the extreme values:

v | y | flzy)

1 0 0 | absolute minimum |
2 0 1

-2 0 9

—1|+v3 10 | absolute maximum|

10. Consider the surface S parametrized by
r(u,v) = <ucosv,usinv,5 —u2> , 0<u<2,0<v<2rm

and a vector field F = <y, y? — z, 3,z>.

\

7 4\"’/&"/» S \\“‘ |
%ﬁr’gﬂ{l\'ﬂmm\m\\\mﬁ&s\:\

,
5 itz

(a) Fully set up in (u,v) the flux of the curl across the surface oriented upwards. DO NOT evaluate.

27 2
//curlF-NdSz / / 2u? cosv — u du dv
S 0 0
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Solution: First we compute:

i j k
_ ; _ 2 2
ry XTI, =| Ccosv sinv —2u| = <2u cos v, 2u smv,u>,
—usinv  wcosv 0

and since the k component is nonnegative, we have the right orientation for IN.
Next, we take the curl of the field:

Pk
curl F(z,y,2) = |0y Oy 0,|=(0+1,0-0,0—1) =(1,0,-1),
y y:—2z 3z

and since it is constant we also have curl F(r(u,v)) = (1,0, —1). And therefore,

2m 2 2 2
//cur1F~NdS:/ / (1,0,-1) - (2u® cos v, 2u” sinv, u) du dv:/ / 2u? cosv — u du dv
5 o Jo o Jo

(b) Stokes’ theorem states that:
//curlF-NdS:/ F.dr
5 c

for C' the boundary curve of the surface S oriented here counterclockwise. Give a parametrization
in t of C then use it to compute the line integral equivalent to the flux of the curl.

Solution: The boundary curve happens at © = 2 and so taking v = ¢, a parametrization of C is:

‘r(t) = (2cost,2sint, 1) , 0<t< 277‘

where we verify that this goes counterclockwise. Then,
dr = (—2sint, 2 cost,0) dt.

And so by Stokes’ theorem,
27
// curl F - N dS = / F(r(t)) - dr
s 0
27
:/ (2sint, (2sint)® — 1,3(1)) - (—2sint, 2 cost,0) dt
0
2m
= / —4sin?t + 8sin®tcost — 2cost dt
0

2m
:/ —2(1 — cos 2t) + 8sin®tcost — 2cost dt
0
sin2t) | 8 o
=|-2|t— + - sin®t — 2sint
2 3 .
=-227r—0)+0-0—(0+0—0) =|—4n|

(c) Close the surface S by including the portion of the plane z = 1 that is on the bottom of S. Now use
the divergence theorem (stated below) to compute the flux of the vector field across the new closed
surface S’ as a triple integral (use cylindrical coordinates). Hint: The original surface S satisfies
z=05—x%—y>%

# F-NdS:/// divF dV
s Q
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Solution: The divergence is:
divF(z,y,2) = Pp + Qy + R. =0+ 2y + 3.

Now if we rewrite our solid @ in cylindrical coordinates, we have 1 < z < 5 — r2, and so by the
divergence theorem,

2m 2 p5—r?
# F~NdS:///dideV:/ / / (2rsinf + 3) r dz dr df
5 Q o Jo J1
2 2 5—r2
= / / (2r%sin 6 + 3r) {z] . dr df

2m 2
/ (2r?sin 6 + 3r)(4 — r?) dr df
0

[~}

27
/ 8r2sin® — 2rtsinf + 12r — 313 dr dO

/
I
27 3 5
:/ [87“ 1n9——sm9+6r —37‘} df
0 3 4 1o
27
:/ %sine—%sin9+24—12—0d9
o 3 5
64 64 °r
= — 059—1——(:059—&—129 =|24m|.
3 5 0



