MATH202X-F01/UX1 Practice Final Exam Name: Answer Key
Spring 2015 ]

Instructions. (0points) You have 120 minutes. Each problem is worth 10 points. No calculators allowed.
Show all your work in order to receive full credit.

1. Consider the following three points: A(—1,0,1), B(1,1,2), and C(1,2,0).
(a) Determine whether the three points are collinear.
Solution: AB = (2,1,1) AC = (2,2,—1). The vectors are not scalar multiples of each other

ie. AB #+ kAC for any real number k, so ‘ A, B, C are not collinear. ‘
(b) If they are collinear, give the parametric equations of the line they form. If not, give the equation
of the plane containing these three points.

Solution:

— 3y

AB x AC =

N DN
N = )

—1
(-1 =2)7— (=2 —2)7+ (4 —2)k
(—3,4,2)

The vector (—3,4,2) is normal to the plane so the equation of the plane is given by (using the point
A):

—3z+1)+4y—-0+2(z—-1)=0

—3r—3+4y+22—-2=0

3z —4y —2:45=0.]

2. Consider the plane:
r+2y+324+4=0

and the following symmetric equations for two distinct lines:

x—|—1_ _z+1
2 YT T

Line 1:

Line 2: x712y72:i1.

Classify the intersection of the plane with each of the lines. Is there a one-point intersection (if so, give
the coordinates of the point), no intersection because the line is parallel to the plane, or is the line in

the plane?
Solution: The normal vector to the plane is @ = (1,2, 3).

e Line 1: the direction vector is v1 = (2,1, —1) and since

(1,2,3)-(2,1,-1) =24+2—-3=1+#0,

then | Line 1 intersects the plane at one point. ‘ From the line we have t =2y — 1 and 2 = -1 —y

so substituting into the plane equation:
Qy—-1)+2y+3(-y—1)=0 = y=0
and so we have x = —1 and z = —1; hence | (—1,0,—1) | is the point of interesection between Line

1 and the plane.
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e Line 2: the direction vector is v3 = (1,1, —1) and since
(1,2,3)-(1,1,-1) =1+2 -3 =0,

then Line 2 is either parallel to the plane (no intersection) or in the plane (infinitely many solutions).
So we test a point from the line. For example from reading the equations, we can see that (1,2,0)

is a point on the plane and
14+2(2)+3(0)+4=9+#0

so | Line 2 is parallel to the plane but not in it. ‘

3. Consider the following vector-valued function, representing the trajectory of a particle:

7(t) = V1 + cos 207+ 3sint T+ 2 cost k.

(a) Find all the open interval(s) on which 7(¢) is smooth.
Solution: We have:

- —sin 2t
r'(t) = <Sm,3cost, —2sint>.

V14 cos2t

Note that »'(¢) is continuous and nonzero wherever it is defined but since it’s undefined for ¢ =
(2k 4 1%) for any integer k, then

7(t) is smooth on U
keZ

((21@;1)777 (21@;1)77).

(b) Find the speed of the particle at t = 0.

77(0)H —3.

Now, for extra credit: the parametric curve lies entirely on which of the following surface(s)? Check

all that apply. You need not justify your answers.
2 2

Solution: We have 77(0) = (0, 3,0) so its speed is

[ the ellipsoid: 2% + % + ZZ =1,
2 2
the hyperboloid of one sheet: z2 + % — ZZ =1,
y? 22
the elliptic cylinder: n + v 1,

N

2
D the hyperbolic paraboloid: = = % —



MATH202X-F01/UX1/PFE

4. A particle in space moves with acceleration:

— Page 3 of 10 —

a(t) = <1,2\1/%,0> , t>1

- 3 3 . e 2
such that its velocity at t =1 is T (1) = < 1, \2f> and its position is 7 (1) = <1, 3’ ﬁ>

57
(a) Find the position of the particle at ¢ = 4.

Solution:

5
= ?:<t+;,\/i,\g§>
?(t)—<t;+;,§t3,t\2/§>+@

<1,§,\/§>?(1)<1,§,?>+7 = _2’<0,0,

(b) Find the length of the curve between ¢t = 1 and t = 4.

Solution:

4
§ /
1

4

:/ ViE2+2t+1dt
1
4

:/ V(1 +1)%dt
1
4

:/ t+1dt
1

2

2 1

1
=8+44—-—1=11—~
8+4— 2

- 4 1\? 3
’tHdt:/ t+ = t+ - dt
r'(t) ! +2 ++4
/4\/t2+t+1+t+3
A 4 4

N 16 5v3
4) = { 10, —, —
7(4) < 3
Zdt
L_[2
2 |2
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5. Consider a point P(1,0) in the domain of the surface
z=xcosy —yx® 4+ 2(y + 1).

Assume the surface represents a hilly area, modeled below:

(a) What is the rate of change of altitude at the point P when moving in the direction of the vector
T = (3,4)7?

Solution: Let @ be the unit vector in the direction of ¥

o U _ 34 _<3 4>
7 VI+I6 \5'5/°

Then the rate of change is:
DUZ‘(I,O) =Vz- m(l,o)

3 4
= <cosy—2xy,—xsiny—m2+2>~< >

55
o (33)

7
-

(1,0

(b) What is the direction of maximum decrease at P? I.e. if chased by a bear, which direction should
P take to get down that hill the fastest? What is the rate of decrease in that direction?

Solution:

o direction: —Vz(1,0) =|(—1,-1)|,

e rate of change: — ||V2(1,0)| =| —v/2]|.
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6. Classify any critical points and then use Lagrange multipliers on the boundary and find the absolute
maximum and minimum values of the function

fx,y) =22 +3y* —4x -5

on the domain z2? + 32 < 16, y > 0.

Solution: The region is the upper part of the disk of radius 4: 2

We'll use the constraint g(z,y) = 22 + y? and then h(z,y) = y. First to find critical points, we solve:
e Vf=0: since Vf = (4x — 4, 6y), we have:

dr—4=0
o = z=1,y=0.
6y =0

The point (1,0) is in our region (barely because it’s on the boundary) and since f,, = 4 > 0,
Jyy =6, foy =0, and d = 4(6) — 0% > 0 then ‘ f has a relative minimum at (1,0, 7). ‘

e on the boundary g(x,y) = 16 (with y > 0): since Vg = (2x, 2y), we have:

dr —4 =2\
Vf=AVg = o * = eithery=0o0r A =3
6y = 2\y

—if y =0 then 22 +0 = 16 so x = pmd4;

—if A =3 then 42 — 4 = 6z so x = —2 and (—2)? + y? = 16 s0 4> = 12 and y = 2V/3 (only
solution satisfying y > 0).

e on the boundary h(z,y) =0 (with —4 < 2 < 4): since Vh = (0, 1), we have:
dr—4=0
Vi=AVh = {° = z=1landy=0
6y = A
which was found already through the search for critical points.

So putting all points of interest in a table:

vy |z
1 0 —7 | relative minimum and‘ absolute minimum‘
-4 0 43
4 0 11

-2 23| 47 ‘absolute maximum‘
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7. Find the moment of inertia about the y—axis I, for a planar lamina R corresponding to the region
below.

where the density p(x,y) = y.

2
]y://Q;?ydA:/Q/ 2 cos® 0 rsin@ r dr df
R o J1

T 2
= / / r* cos? 0sin 6 dr db
o Ji1
s 2

Solution:

5
:/2 L cos? @ sin 6 db

0 5 1

31 (% 31 1 T [31
=5 ; cos?fsinf db = 5 {—Scos?’ﬁ]o =15

8. Consider the vector field ?(az,y,z) = <:czy,xy2,2:£yz> acting on a closed surface S consisting of the
boundary of a triangular prism with the following vertices:

z

s A

(0,1,2)

(0,1,0)

S
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We are interested in evaluating the flux of the vector field over the surface S. Since the component
functions of ? have continuous first partial derivatives over the solid prism @ , apply the Divergence

Hheoren %[é F.-Nds= ///Q div F dV

to evaluate the flux indirectly.

Solution: If we use the order dz dx dy for (Q we need its projection onto the xy-plane:

Y

1 T+2y =2

Now since the divergence of ? is:
div ? = 22y + 22y + 22y = bxy

then the flux is:

1 p2-2y 2 1 p2-2y 1 -
///div?dV:// /Gmydzdwdy:// 12myda:dy:/ 6x2y‘0 ydy
Q 0o Jo 0 o Jo 0
1

=8y du =8 dy
— | 24y(1—y)? dy = Iy
/0 y(L—y)" dy dv=3(1-9y)?2dy v=—-(1-y)3

0 1 1
:M+/O 8(1—y)*dy = —2(1-y)*|, =[2].

For extra credit, evaluate directly the flux. Note that you need to consider 5 surfaces separately including
one which can be given by the following parametric representation: 7(u,v) = (2 — 2u,u,v) for 0 < u <
1,0<v<2.

Solution: First let us label the five faces and their respective normal vectors:

s
(2, 0, 2)

M S1 ,S’?)\L

z
N5
(0,1,2)

2.0,0
( /) Ny

T

Then note the few shortcuts along the way...

eon S, y=0so0 F=< 22(0), 2(0)2,22(0)z >= 0 along S; and therefore, / F-NdS= 0;
S1
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eon Sy, z =0 so ? =< (0)2y, (0)y>,2(0)yz >= i} along S5 and therefore, / F . ﬁ dS = 0;
Sa

e on S3, we can use the given parametrization #(u,v) = (2 — 2u,u,v) for 0 <u <1, 0 <wv < 2. So

77k
To X Ty =[-2 1 0[=(1,2,0)
0 0 1

and since it is pointing outwards already, then we choose Nz dS =(1,2,0) dv du and so:
1 p2
/ F.-NdS= / / (2 = 2u)?u, (2 — 2u)u?, 2(2 — 2u)uv) - (1,2,0) dv du
S 0 Jo

1 2 1
= / / w(2 = 2u)? 4 2u*(2 — 2u) + 0 dv du = / w(2 —2u) (2 — 2u + 2u) [v]g du
0o Jo 0

1 371
4
—/8u(1—u)du—{4u2—8u] :4—§:7;
0 3 1o 3 3

e on S, we have that NZ = (0,0,—1) so only the P component of ? will survive; but z = 0 on Sy
so P = 2xy(0) = 0 and therefore, / F.-Nds= 0;
Sa
e on S5, we have that ]V;: = (0,0,1) so only the P component wil survive again; this time z = 2 and

P = 2zy(2) # 0 everywhere so we need a representation of Sy; the easiest is to use the description
of the face from the indirect computation done earlier (except now z = 2), i.e.

S5 ={(z,9,2) : 0<y<1,0<2<2-2y}

and therefore,

1 p2-2y 1 r2-2y
// F.Nds= / / <x2y,my2,4xy> -(0,0,1) dx dy = / / 4y dx dy
Ss 0o Jo 0o Jo
1 s 1
:/O [22y], dy:/o 2(2 —y)%y dy

1 u = 8y du =8 dy
= [ 8y(l-y)?dy= :
/0 WO =g -y 0= -0
1,.0 1 1
(1_ 2 3 2 4
= (-8 S1-yPdy=—-=(1- =,
3 0+ ; 5(1—y)"dy 31-9) T3

So putting them all together, we have:
? ﬁ 4 2
NdS=0+0+-+0+>=[2]. v
5 3 3
Note that even though we get the same result, using the divergence theorem was much easier...

9. Consider a particle moving through space along the curve C' given by the following parametric repre-

sentation:
t t
F(t):<t3—3t+1,2+1,2cos7rt> , 0<t<2

and subject to the vector field: ?(x, y,2) = (y* — 22z, 3wy? + 22,2y — 2?).
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(a) Show that F is conservative.
Solution:
v 7 F B
cl F =| o, d, 0, |=(2-2)7— (—22+22)7+ (3y® — 3y )k = 0
Y3 —2xz 3’y +2z 2y — 2>

so ’ ? is conservative. ‘
(b) Find all potential functions for the field 7.

Solution:

f(w,y,2)=/y3—2xz do =2y’ — %2+ C1(y, 2)
flz,y,2) = /?wy2 + 2z dy = zy° + 2yz + Ca(x, 2)

f@,y,2) = /2y —a? dz = 2yz — 2z + Cs(,y)

= ‘f(x,y,z):xy3fx2z+2yz+6"

(¢) Use the Fundamental Theorem of Line Integrals to compute the work done on the particle.
Solution: Since 7(0) = (1,1,0) and #(2) = (8 — 6+ 1,2,1) = (3,2,1) then

W:/ Fdif = £(3,2,1) — f(1,1,0) = 3(8) — 9(1) + 2(2)(1) — 1+ 0 — 0 =[18].
C

For extra credit, using the same initial and final points, find a simpler path between them and use
it to compute the work again — directly this time.

Solution: We can use paths parallel to the axes and use the differential form:
e Ci: (1,1,0) — (3,1,0) then

0 0 r3 3
Fodi— M(m,l,O)dm+W+W:/ 1—2x(0)dx:/ dz = 2,
Cy Cy 1 1

e Co: (3,1,0) — (3,2,0) then

0
?~d77=/ W—FN(&?/,O) dy'i'W
Cy C2

2 2
= / 3(3)y? +2(0) dy = / 9y? do = [3y3]f =24 -3 =21;
1 1

0

e Cs3: (3,2,0) — (3,2,1) then

0 0
Foar= [ M@ NE2dy s Pe.2.2) da
03 CB
1

:/012(2)—(3)2dx:/0 —5dr = —5.

W:/?-dﬁ:2+21—5:. v
c

So putting it all together,
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10. Use Green’s Theorem to evaluate
?g (sin(z®) + 3y) dz + (Iny + 4z) dy
c

where C' is the closed curve composed of the graph of y = % + 1 for 0 < x < 2 followed by the line
segment going from (2,2) to (0, 1) as illustrated below:

Solution: The piecewise smooth closed simple curve C' is oriented positively and the line segment has
equation y = 3 + 1. Setting M = sin (:v2) +3y and N = Iny + 4z, we have M, = 3 and N, = 4 and
therefore by Green’s theorem:

2zl
(jlgde—&-Ndy://(Nm—My)dA://2 (4— 3) dy dz
c R 0 Jzlq
2 2 312

2

8 4 [1
-/ o = —1-5-4-1.
0 o 12 12 |3

ol

r r
4 4

IR



