

 ϵ $\hat{\mathcal{L}}$ $\hat{\mathcal{L}}$

 $\label{eq:3} \frac{1}{\sqrt{2}}\int_0^1\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2$ i
S

 $\frac{1}{\sqrt{2}}$ i, i
S

 $\frac{1}{\sqrt{2}}$

i
S

What do I man by this limit ? Just apply comparent wise $\tilde{r}(t) = \langle x(t), y(t), z(t) \rangle$ - ϵ_1 lim I man by this limit? Just apply component wise
 $y = \langle \chi(B), \gamma(B), z(B) \rangle$
 $\langle \chi(B), \gamma(B), z(B) \rangle$
 $\langle \chi(B) - \chi(B), \chi(B) \rangle$ $=$ (lum $\frac{\chi(4)-\chi(6)}{4-6}$) Hust do I man by Huis limit? Just apply component
 $\vec{r}(k) = \langle \chi(k), \gamma(k), \tau(k) \rangle$

Limito $\langle \frac{\chi(k) - \chi(k)}{k - k_0} \rangle = \frac{\chi(k) - \gamma(k)}{k - k_0} = \frac{\chi(k) - \chi(k)}{k - k_0}$
 $= \langle \chi''(k) \rangle$, $\gamma'(k_0)$, $\tau'(k_0)$
 $= \langle \chi''(k) \rangle$, $\gamma'(k_0)$, $\tau'(k_0)$ $\langle x'|t_0\rangle$, y'(to), z'(to)) You already know how to compute I-d decratives ! e. $F(E) = cos(\omega t)$ \hat{c} + $sin(\omega t)$ ĵ $\begin{array}{c} \mathbf{F}(t) \mid t \neq 1 \end{array}$ $\hat{\Gamma}(\mathfrak{o}) = 2$ $\sum_{n=0}^{\infty} \left(\frac{2\pi}{\omega} \right)^n = 2\pi$ also · (period

Betone computing dematines of We complete one of of lasth ZT in tune 27 , what speed do we expect? W (w70 ayers) $+10cos(\omega t)^2$ $-w$ sin (cot) \hat{c} $\sum_{r=0}^{5} f(r) = 1$ $-w \cos(\omega t) \sin(\omega t) + \omega \sin(\omega t) \cos(\omega t) = 0$ $Wele: \quad \vec{r} \cdot \vec{r}' =$ RFI < Mink of This as velocity. Haw long is it ayong? $\left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{array}\right)$ $||\vec{r}||^2 = \omega^2 \sin^2(\omega t)$
 $+ \omega^2 \cos^2(\omega t) = \omega^2$ $=$ $|\phi\rangle$ $||\succ|$

On a geneal curve, we visualize \vec{r} pointing in a direction target to the course geneal curve, we
a direction fangent \mathcal{H}^{\vee} direction becomes this. The legth of it's the speed of transad. Related to thus direction is a notion of linear approx. $\vec{r}(t_0)$ e_5h
 e_5h e_6h e_7h e_8h e_8he
 e_9h e_9h e_9h
 e_9 $-\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\vec{r}'(t_{\delta})$ $\vec{L}(t) = \vec{r}(t_0) + \vec{r}'(t_0)$ $X(E) = Y(E_0) + F(E_0)E$
This is a constant velocity cance , $\overrightarrow{\ell}(b_0) = \overrightarrow{r}(b_0)$ $\vec{L}'(t_o) = \vec{r}'(t_o)$

 $T^{\parallel\parallel}$ call $\vec{\ell}$ (t) The fangest line to the corres , but it's really a permetersed line $\frac{1}{\sqrt{1}}$ $t-t_0$ $t=t_0$ $t=6.722$ $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$ E.g. fund Me permetre très et the forzer line $\vec{r}(t) = \langle \text{Loss}, \text{Cost}, t \rangle$ $x^2+y^2 = z^2$ $\mathcal{L} \rightarrow \mathcal{L}$ \therefore \therefore \therefore \therefore \vee \circ \circ Carc $P'(t) =$ < cost - tant, sint + tcost, 1> $\overrightarrow{r}(i_{\pi}) = \langle \begin{array}{c} | & 2\pi \end{array} \rangle$ $\sum_{n=1}^{\infty} (2\pi) = (2\pi)^n$

 $\vec{J}(t) = \langle 2\pi, 0, 2\pi \rangle + (t-2\pi)(1, 2\pi, 1)$ $\mathcal{L}(t)$, $2\pi(t-2\pi)$, $t > 1$ Caution tale $F(t) = 2\epsilon^3$, t^2 \rightarrow \rightarrow \rightarrow 0 X Moveres as t Moneres $\sqrt{2}$ $y^3 = x^2$ $y = x^2/3$ what's the lead? ℓ^3 , ℓ^2 look smooth! If r' exists and \neq 0 we'll say the

Some rules $\frac{1}{dt}$ ($\vec{r}(t) + \vec{s}(t)$) = $r'(t) + s'(t)$ $\frac{d}{dt} = \overrightarrow{r}(t) \times \overrightarrow{s}(t) = \overrightarrow{r}'(t) \overrightarrow{x}(t) + \overrightarrow{r}(t) \times \overrightarrow{s}'(t)$ $\frac{d}{dt}$ $\vec{r}(t) \cdot \vec{s}(t) = \vec{r}(t) \cdot s(t) + \vec{r}(t) \cdot \vec{s}'(t)$ $\frac{d}{dt} \vec{r}(f(t)) = \vec{r}'(t) f'(t)$ $Suppose \quad |\vec{r}(t)| = 1$ for all to $\vec{D}(t) \cdot \vec{r}'(t) = 0.$ $\frac{d}{dt}$ $\hat{r}(t)$ $\hat{r}(t)$ = $1 =0$ $r^*(t)\cdot \tilde{r}(t)+v(t)\cdot \tilde{r}'(t)=$ $2F(f) \cdot F'(f) = 0$ Con replace 1 with any radius

Integration $\left\langle \int_a^b x(t)dt\right\rangle \int_a^b y(t)dt\int_a^b z(t)dt\right\rangle$ $\int_{0}^{b} \vec{r}(t) dt$ $\frac{1}{2}$ Why would you do this? $y^2 = \frac{y^2}{x^2} = \frac{2^2}{4} = \frac{2^2}{4} = \frac{16}{4} = 4$ What hyppered here $f(x) = x^{3}$
 $F(x) = x^{4}$ $JFL(x)=f(x)$ $\int_{0}^{2} F'(x) dx =$ $F(2)-F(0)$ PTC $= F(b) - F(a)$ \int_{a} F'(x) dx integrate a vite of dage and your

 b be been as b becomes b $\int_{a}^{\infty} s^{n}(t)dt =$ $\left\langle \int_{a}^{b} x^{n}(t)dt \right\rangle$ $\left\langle \int_{a}^{b} s(t)dt \right\rangle$ $\left\langle \int_{a}^{b} z^{n}(t)dt \right\rangle$ a = $(x(h)-x(a), y(b)-y(b), z(b)-z(a))$ $E(E) = \overrightarrow{r}(a)$ (FTC) Same principle : integrate ^a velocity and = $\frac{1}{b}(b) - \frac{1}{b}(a)$ (FTC
ne principle: internet a velocity and
your get a not chase in possibility. $\int_{a}^{b} \hat{r}'(b) dt = \left\langle \int_{a}^{b} y(b) dt \right\rangle_{a}^{b} \left\langle \frac{b}{2}k(0) dt \right\rangle$
= $\left\langle x(k) - x(a) \right\rangle_{a} \left\langle (b) - y(b) \right\rangle_{a} 2(k) \left\langle b \right\rangle$
= $\left\langle x(k) - x(a) \right\rangle_{a} \left\langle (b) - z(a) \right\rangle$
= \therefore $\hat{r}(b) - \hat{r}(a)$ (FTC)
Sunce providiple: integrale on (displacement) $We'll sendines write $\tilde{v}'(t) = \tilde{v}(t)$$ $\int_{a}^{b} \tilde{r}'(c) d\theta = \left\langle \int_{a}^{b} \tilde{r}(c) d\xi \right\rangle \int_{0}^{b} \tilde{r}(c) d\xi = \left\langle \int_{a}^{b} \tilde{r}(c) d\xi \right\rangle \int_{0}^{b} \tilde{r}(c) d\xi = \left\langle \frac{1}{2} \tilde{r}(c) \right\rangle$
= $\left\langle \times (b) - \chi(c) \right\rangle$ $\varphi(b) - \tilde{r}(c)$
= $\frac{1}{b} \tilde{r}(b) = \tilde{r}(a)$ (FTC)
Sume $\int_{a}^{b} \overrightarrow{v}(t) = \overrightarrow{v}(b) - \overrightarrow{v}(a)$ E. $g.$ Suppose $r'(0)=\sqrt{5}$ + (2-9.8+) γ . and $\vec{r}(0) = |(-1, 3, 2)$ $Joh: Fald (t)$

Method 1 $\int_{0}^{t} \overrightarrow{v}(t) = \int_{0}^{t} \overrightarrow{r}(s)ds = \overrightarrow{r}(t) - \overrightarrow{r}(0)$ $\int_{0}^{2} \langle 5, 2 - 9, 86 \rangle dt = \overline{r}(6) - \langle 1, 3, 2 \rangle$ $(55\int_{0}^{t} 25 - 165^{2} \int_{0}^{t} 0) = r(t) - 2132$ $56, 26 - 986, 0) = 76 - 4,32)$ $F(t)=\ \leq |+5t|$, 3+26-98 t^2 , 27

 ϵ ϵ $\hat{\mathcal{E}}$ $\hat{\boldsymbol{\beta}}$ ϵ $\bar{\gamma}$ ϵ $\bar{\gamma}$ $\bar{\gamma}$ ϵ ϵ ϵ ϵ \sim ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ \sim ϵ ϵ ł, ϵ $\bar{\gamma}$ ϵ ϵ ϵ ϵ ϵ \sim ϵ

 \sim