E.g. Distance between P and a plane P K QP QP = w + cn for some c. (w poullel to plue) distance from P to plue is || cill= |c| ||i|| How to determine c? Take a lot product $\overrightarrow{QP} \cdot \overrightarrow{n} = \overrightarrow{w} \cdot \overrightarrow{a} + c ||\overrightarrow{u}||^2$ $= C \left\| \right\|^{2}$ QP-7 QP.n |c| ||x||= 11211

Sorfoces in 32. So for we have lives + planes but we'll need other examples -> circle of radius $X^2 + \gamma^2 \equiv 1$ $\chi^2 + \chi^2 =$ $x^2 + y^2 + z^2 = 1$, r^2 gplane of values 1, r $\begin{pmatrix} x \\ a \end{pmatrix}^{2} + \begin{pmatrix} y \\ b \end{pmatrix}^{2} + \begin{pmatrix} z \\ c \end{pmatrix}^{2} = \begin{pmatrix} z \\ c \end{pmatrix}^{2$ (Ellipsoid)

How about $\chi^{2} + Z^{2} =$ 2 cylinder. y = 5in(x)Anotho: (union of parallel straislet lives...)

· · · · · · ·	Sec 2.6 Sone	surfaces M 3-d.	•
	Uld trierds:	· · · · · · · · · · · · · · · · · · ·	•
· · · · · ·	$x^2 + y^2 = 3$	lescribes civile	•
· · · · · ·	· · · · · · · · · · · · ·	radius J3	•
. 	$y = x^2$	perabola	•
· · · · · · ·	$y^2 - x^2 = 1$	huperbola	•
		$(-1)^{2} - \chi^{2} = (-1)^{2}$	•
· · · · · · ·			•
· · · · · ·			•

There are generalizations of these in 3-d Parabolord $Z = \chi^2 + \chi^2$ $(50 , 5 x = y^2 + z^2)$ $= \left(\frac{x}{z} \right)^2 + \frac{z}{z} = 1$ $Z = \left(\frac{x}{z}\right)^2 + \frac{x}{z}^2$ (strodnin X - e direction!) My favorites are the hyperbolic paraboloides Z= X²- Y²

If y=1ZEXZ These make salles. Hyperboloids (ousins: 2 - × plure 22-42 Picture plune is the sme ro sheated hyperbolo.d (two

Another way to think about A 2² - x²-y²= $= = \frac{1}{1} \int \frac{1}{1 + x^2 + y^2}$ Z coord only depends on x2+y2-. X.14

(x2+y221 13 impossible 2² = x²+ 2: one-sheeted hypebolod. $\frac{2}{2} = \chi^2 - 1$ $z^2 = x^2 + y^2$ 22= x2+12 cone 2 $z^2 = \chi^2 + \gamma^2$ $z = \pm \int \sqrt{2} t y^2$ (degenente hype-boloid) ione