a 540=h R Fun tricks **()**, 0 P How for is & from the line? (4) It's a sind. But $\| \overrightarrow{PQ} \times \overrightarrow{r} \| = a \| \overrightarrow{v} \| \sin \theta$ $h = a \sin \theta = \frac{|| \cdot || \cdot || \cdot ||}{|| \cdot ||}$ $= \| \overrightarrow{PQ} \times (\overrightarrow{Im}) \|$ [unit vector]

Equations of places. What have do you need to describe a plane? In 3-dimensions every pluse has a unique or theyard direction A vector pointing in the orthogened direction is known as a normal vector

Special case: What it the plane passes through the origin? ~ P(x,y,z) . . . (x, y, 2) ~ P ñ · (x, y, 27 \mathcal{O} $\vec{n} = \langle a, b, c \rangle$ ax + by + c = 0this is the equation of a plane though origin with normal Kabic?

What happens if your replace in with 7 in?
Phene doesn't churge.
Formula becomes Tax + 7604 + 702=0
ad the sume points satisfy this velation.
e.s. Given $\bar{n} = \langle 1, 1, 0 \rangle$ is P(3, 2, 6) on the plane three 0 W/ this normal? $T_{5} Q(-1, 1, 5)$?
X + - 1 = 0
$3+2\neq 0$ P, 10 -1+1=0 Q, yes

Bat not every place is three the origin
$\frac{1}{2}$
Q(x,y,z) Q(x,y,z)
$\vec{V} = \langle x - x_0, y - y_0, z - z_0 \rangle$
$\vec{n} \cdot \vec{V} = 0$ agoly
$\vec{n} = \langle a, b, c \rangle$
$a(x-x_{0}) + b(y-y_{0}) + c(z-z_{0}) = 0$
(2, b, c7 normal P(x0, Y0, 20) some spot on plane.

We can also write this as ax + by + c 2 = axo + by o + c 20 1 ax+by+cz = dLabos which normal I luber for the place w/ this round less in formative d= 0 => is place three O. E.g. Find the equation of the plane there The three points Q P(1,0,2) Q(-1, 3,4) R(3, 5, 7)

$\vec{PQ} = \langle -2, 3, 27$ $\vec{PR} = \langle 2, 5, 57$
Now we need a vector or the to both. to get the normal
$\overrightarrow{Po} \times \overrightarrow{PR} = \overrightarrow{x} \text{will } d_{0}!$ $\begin{vmatrix} \widehat{c} & \widehat{j} & \widehat{c} \\ -2 & 3 & 2 \\ 2 & 5 & 5 \end{vmatrix} = \widehat{c}(5) + \widehat{j} + \widehat{j} + \widehat{c}(-6)$ $= \langle 5, 4, -6 \rangle$
$\vec{n} \cdot \left(\left(\left\langle v_{1}, v_{1}, z \right\rangle - \vec{p} \right) = 0$ $\vec{n} \circ \vec{d} \text{ or } \vec{k}$
$\tilde{n} \cdot (\langle x - 1, y, z - z \rangle) = 0$ 5(x-1) + 14y - 6(z-2) = 0

Ov	5x + (4.	-62= = [· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <t< th=""></t<>
E.s. F.L	line of m	tersection St	etweer	
	+2=1	ר איך-א		
	N		· · · · · · · ·	· · · · · ·
ň	= <1,1,17	$\tilde{h}_2 = \langle l, -$	337	
			rection of a in The plane $\vec{\nabla} \cdot \vec{n} = 0$	D .
	live in The in	to-section hus	to hue a	
• • • • • • • •		and I		

How bant that cross praduct
$ \begin{vmatrix} \hat{c} & \hat{c} & \hat{c} \\ 1 & (1) \\ (-23) \end{vmatrix} = \langle 3+2, -(3-1), -2+1 \rangle $
= < 5, -2, -17
Great! Now we know a normal We just
nced a pourt.
Let's prok the point on the line where x = 0
At that point y+2= (=7 2y+22=2 -2y+32=1 -2y+32=1
SZ=3
z = 3/5
$\gamma = 2/5$
$Point: \langle 0, \frac{2}{5}, \frac{3}{5} \rangle$
デ= くの, き, 音フ+ + くち, -2, -17
$X = 5t, Y = \frac{2}{5} - 2t = \frac{3}{5} - t$

E.g. Angle between plus ホー くりリーフ X + Y - Z = 53x - 4+42= 9 ñz=(3,-1,47 Ande between plans 13 just mole bolueer romals 7 kz n. Tz = Mnill Mazl cos Q 3 ~(1 - 4 2 $\|\overline{a}\| = \sqrt{3}$ $||\vec{n}_2|| = \sqrt{9} + |\vec{n}_2| = \sqrt{26}$ $\theta = \arccos\left(\frac{-2}{53526}\right) =$