Dot Products ⁺ Physics $\sqrt{2}$ constant If a force \vec{F} is applied to a body that moves from P to Q then the body gains/loses energy. then the body gades/loses enorgy.
This change is the <u>work</u> done on the body
work = $\vec{F} \cdot \vec{P} \vec{a}$. It is also
 $Work = \vec{F} \cdot \vec{P} \vec{a}$. It is also work is a dange in energy a scalar $work = \vec{F} \cdot \frac{\vec{p} \cdot \vec{a}}{\sum_{m}}$ $f1l\cdot abo$ L $k_g = N$ ent of $[wenk] = kg m²/s² = J$ Joule

P & 10kg $P(\vert m, 3m)$ $Q(4m, 7m)$ $\overrightarrow{PQ} = \langle 3, 4 \rangle$ $F = \langle 0, -98 \rangle$ $\vec{F} \cdot \vec{P} \vec{\alpha} =$ $-392J$ Gravity roles it of 400J of energy to move from \overrightarrow{P} to \overrightarrow{Q} .

Orthogonal Projection T Beam t_{loop} Projection
 $\frac{7}{1300}$
 $\frac{40}{0}$

Becm
 $\frac{1}{1300}$ Question: How much of \bar{t} is parallel to Me lase beam? We care, because shoor forces matter at the holts. $\frac{2}{3}$ We can write \Rightarrow \vec{a}
 \vec{a} We can write \vec{a} as a sum of to and perp to to

(Orthogonal) Projection $\frac{a}{2}$ $\frac{a}{2}$ $\frac{a}{6}$ projector of à along b (vrite à as green + 717 $\frac{2}{a} = c\overrightarrow{b} + \overrightarrow{d}$ $a = \frac{1}{2}$ = $c |b|^2$ $proj_{\overrightarrow{h}} \overrightarrow{a}$ $=\frac{2}{\frac{2}{b}}\frac{1}{b}$ $\frac{5}{a} = \frac{5}{\sqrt{\frac{3}{b}}} = \frac{5}{b} + \frac{1}{d}$

 $\begin{matrix} 1 \\ 0 \\ 0 \end{matrix}$ $\zeta = \langle 1,2 \rangle$ $e.g.$ $6 = 2-1,47$ $\frac{\partial}{\partial s} = \frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}{\partial s}$ $a-b = 1-(1)+24 = 7$ $||\cdot||^2 = |+|$ 17 $\frac{1}{17}$ $\frac{1}{17}$ $\frac{28}{17}$ $\frac{28}{17}$ $=$ $\langle 0.41, 1.64 \rangle$ $d = \vec{a} - \vec{p} \cdot \vec{o}$ = $(1,2)-(0.4),1.64)$ $= 6.59,035$

Cross Product $\vec{a} = (\langle a_{1}, a_{2}\rangle, a_{3})$ $\int_{b}^{b} = \langle b_{1}, b_{2}, b_{3} \rangle$ $\vec{a} \times \vec{b}$ First how to compute. Then what it is geometrically Then application, Then , maybe, determinants Result is a The
The
a vector $2 \hat{J}$ \hat{c} a vector.
 \hat{c} \hat{j} \hat{k} \hat{a} \hat{k} = $(a_2b_3-a_3b_2)\hat{c}$ a_1 a_2 a_3
 b_1 b_2 b_3
 a_1 a_2 a_3
 b_1 b_2 b_3 a_3
 b_3 $a_1b_3-a_3b_1$),] $+$ (a_i b₂ - a_zb₁ $\sum_{k=1}^{n}$ a_1 a_2 a_3
 b_1 a_2 a_3
 a_1 a_2 a_3
 b_1 b_2 b_3

What a mess! What coold this be good Sor. Some properties $(a_2a_3-a_3a_2)\hat{c} - (a_1a_3-a_3a)\hat{c}$ $1)$ $\vec{a} \times \vec{a} = \vec{0}$ 2) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
(articonnatable) $a_2b_3 - a_3b_2$ etc.
 $b_2a_3 - b_3a_2$ $3) \vec{a} \cdot (\vec{a} \times \vec{b}) = 0$ $\left(\begin{array}{c} \end{array}\right)$ $a_1(a_1b_3-a_1b_2)-a_2(a_1b_3-a_1b_1)+a_3(a_1b_2-a_1b_1)$ $4) b \cdot (\vec{a} \times \vec{b}) =$ $\vec{b} \cdot (\vec{a} \times \vec{b}) = -\vec{b}(\vec{b} \times \vec{a})$ $\epsilon = 0$

Whoa! Whatever this cross product there is it is perpedicular to both \vec{a} all \vec{b} ! \rightarrow AVE It points somewhere
along this line! $\sum_{i=1}^{n}$ \sum_{c}^{K} $a)$ How long? ESE21 b) which side?

C x $S = 1$ 000 $02 + 03 + 12$ $\int x \sqrt{2} = 2$ ercest Result is always right handed $k_{x}z=\gamma$ always, true

 \overrightarrow{a} x \overrightarrow{b} a long How much? here. $\vec{b} = ||\vec{b}|| cos \theta c + ||\vec{b}|| sin \theta \wedge$ $a = ||a|| 2$ $\boldsymbol{\theta}$ $\vec{a} \times \vec{b} = ||\vec{a}|| ||\vec{b}|| \sin \theta \hat{L}$ unt (0505180°) 02 SMO < $|| \vec{a} \times \vec{b} || = || \vec{a} || || \vec{b} || \sin \theta$