Dot Products + Physics If a force \vec{F} is applied to a body that moves from P to Q then the body gains/loses energy. This change is the work done on the bally. work is a dunge in energy a scalur work = F. PQ, Lym ftlb also L kg $\frac{m}{5^2} = N$ cunit of orony $\left[work \right] = kg m^2/s^2$ Joule J

	· · · · · · · · · · · · · · · · · · ·
$\frac{1}{35^{\circ}}$		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
$\frac{5m}{\vec{v}}$ Work done $\vec{F} \cdot \vec{v} = 52m$	
$\vec{F} = 1000 (\cos 35^{\circ} \hat{c} + \sin 35^{\circ} \hat{s}) N$ $\vec{F} \cdot \vec{v} = 5000 \cos 35^{\circ} = 4095.76$		· · · · ·

P 210kg 98 N P (1m, 3m) Q(4m, 7m) $\overrightarrow{Pa} = \langle 3, 4 \rangle$ F = < 0, -98> $\vec{F} \cdot \vec{Pa} = -392 J$ Gravity roles "It of 4005 of energy to move from P to Q.

Orthogonal Projection 1/K 40° Beem 17 5300 Question: How much of T is porallel to the large beam? We care because shoon forces matter at the bolts. We can write T 2 as a sum of pile-s perallel to all perp to i

(Orthogonal) Projection à 71 à 76 projection of a along b (write à as green to bo JIG $\dot{a} = c\vec{b} + \vec{d}$ $\vec{a} \cdot \vec{b} = c |\vec{b}|^2$ projtà $c = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$ $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$ · + à- prosta

e.g. $\vec{a} = \langle 1, 2 \rangle$ \vec{b} \vec{f} $\vec{b} = \langle -1, 4 \rangle$	
$pro_{\overline{5}} = \frac{\overline{a} \cdot \overline{b}}{\ \overline{b}\ ^{2}} = \overline{b}$ $\overline{a} \cdot \overline{b} = \ \cdot (4) + 2 \cdot 4 = 7$	•
$ \overline{6} ^2 = + 6 = 7 $	
projja= 青くしょう = く- 澤, 浮う = く0.41, 1.64>	•
$d = \vec{a} - proj_{\vec{b}} a$ = $\langle 1, 2 \rangle - \langle 0, H, 1, 6 H \rangle$	• • • •
$= \langle 0.59, 0.35 \rangle$	•

· · ·). (- u 	le	5;	•	•	•	ũ		, ī		· · · · · · · · · · · · · · · · · · ·	•			12		•	•	•	•	•	•	•	•	•	• • •		•	•	•	•	•		
• •	•	• •	•	•	•	•	Ū	۔ مے ا	•	(v √			Ŵ)))	-		Ĩ	。 入 人	r √	•	+	Ū		u	7	• •	· ·	•	•	•	•	•	•	•
• •	•	• •	•	•	•	•			(ū	2	Ū V)		•	(.	Ċ))	• 1	7			i U	- - -	(a			· · · · · · · · · · · · · · · · · · ·	•	•	•	•	
																				•					•	•				•			-		
• •		• •					•				•	•	•							•				•		•					•	•	•		
• •	•	• •	•				•				•	•	•	•				•		•	•		•	•		•							•		
• •		• •					•	•	•	•	•	•												•		•					•	•	•	•	
• •	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	
		• •			•		•	•	•	•	•	•	•	•				•		•	•		•			•							•	•	
• •		• •			•	•		•	•	•	•	•		•			•	•	•	•	•	•	•				•					٠		•	
				•	•		•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	• •		•	•	•		•		
		• •					•	•	•	•	•	•		•				•			•		•	•		•						•	•	•	
• •		• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	
		• •																																	
• •		• •																																	
• •		• •																																	
• •					•		•						•											•		•							•		

Cross Product $\vec{a} = \langle a_{1,a_2}, a_3 \rangle$ $\overline{b} = \langle b_1, b_2, b_3 \rangle$ First how to compute. à xb Then what it is geometrically Then application. Then, maybe, determinants Result is a vector. 2 J L $\vec{a} \times \vec{b} = (a_2 b_3 - a_3 b_2) \hat{L}$ $a_1 a_2 a_3$ $b_1 b_2 b_3$ T $(a_1b_3-a_3b_1)$ $+(a_1b_2-a_2b_1)k$ $\begin{array}{c} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array}$ a, az az b, bz bz

What a mess! What could this be good for ... Some properties $(a_2a_3-a_3a_2)\hat{o} - (a_1a_3-a_3a_3)\hat{o}$ etc... $1) \vec{a} \times \vec{a} = \vec{O}$ 2) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (articonnutative) $a_2b_3 - a_3b_2$] etc. $b_2a_3 - b_3a_2$] etc. 3) $\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$ (1) $a_1(a_2b_3 - a_3b_2) - a_2(a_1b_3 - a_3b_1) + a_3(a_1b_2 - a_2b_1)$ $4)\vec{b}\cdot(\vec{a}\times\vec{b}) =$ $\partial \mathcal{O}$ $\vec{b} \cdot (\vec{a} \times \vec{b}) = -\vec{b}(\vec{b} \times \vec{a})$ -0 = 0

Whoa! Whatever this cross product thing is it is perpendicular to both à al 6! It points somewhere along this like! K. K TIS a) How long? ester? b) which side? 23k 23k 2x = k 100 01000+05+16 Jx k = 2 excess Result is always right handed $k \times \tilde{c} = \hat{j}$ always, true

axb along How much? here. D = 1161 cost ~ + 1161 suds $\vec{a} = ||\vec{a}||\hat{c}$ θ àx 5 = 112/116/1 sur 0 2 unt (0505140°) OL SHO SI $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \le \theta$