Sections 2.1, 2.2	
Displacement Vectors	
7	7° B
	A AB
c c0	
The displacements for one the same.	m C to D al for A to B
The displacements for one the same. If we tomplate C	nn C to D al Com A to B to A Non D lands
The displacements for one the same. If we trouslate C on A.	m C to D and from A to B to A Non D lands
The displacements for one the same. If we translate C on A. We identify:	nn C to D al from A to B to A Non D lents
The displacements f_{i} ore the same. If we translate C on A. We identify: $\overline{CD} = \overline{A}$	m C to D and Com A to B to A Non D lands

CD=AR Lund of vectors Erdiden space (displacements) (points) Displacement vectors have a direction (mostly) and a length. [AB] is just the distance from A to B. AB The zero vector does not hure direction.

Operations on vectors:	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · ·	• • • •
1) Vector addition	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
\vec{u} \vec{v} \vec{v} \vec{v}	<	 . .<	• • • • • • • • •
$\vec{AB} + \vec{BC} = \vec{AC}$	<	 . .	
2) Scale-mult: plrcation: $a > 0$, $\vec{u} \neq 0$ $a \vec{u}$ is the vector porallel to \vec{u} with length $a \vec{u} $			• • • • • •

<u><u><u>u</u></u><u>1</u> <u><u>3</u><u>u</u><u>1</u></u></u>	
aco: points in apposite direction	· ·
$a \cdot \vec{O} = \vec{O}$ nor matter what a 13.	
3) Subtraction $\vec{u} - \vec{v} = \vec{u} + (-\vec{r})$	· ·
\vec{u}	· ·

i -v -v commutative Addition The zero vector 13 special: $\vec{O} + \vec{u} = \vec{u} + \vec{O}$ so matter what \vec{u} is. Note: the <u>origin</u> of your coorduate systems Contesum is orbiting.

lle zero vector (zero displacement!) is a very veal thing. Once you establish, coordantes, vectors gain Cartesan displacement coordunates as well: $P = (x_0, y_0, z_0)$ $Q = (x_1, y_1, z_1)$ PQ = (x,-Yo, y,-Yo, Z,-Zo) Lo not stondard, but used in text IPs just the difference in coordinates. The geometric vector opecitions have very natoral algebraic equivalents:

	•
$\tilde{a} = \langle a_{i}, a_{i}, a_{i} \rangle$	•
	•
$b = (b, b, b_{a})$	•
	•
	•
$a + b = \langle a_1 + b_1 \rangle \langle a_2 + b_2 \rangle \langle a_3 + b_3 \rangle$	•
· · · · · · · · · · · · · · · · · · ·	•
$ca = / ca, ca_2, ca_3$	•
	•
	•
a = b = (a = b + a = b = a = b = 2	
Prate 1:55:	
Prope 1:00:	
Properties: $(\hat{a}+\hat{b})+\hat{c}=\hat{a}+(\hat{b}+\hat{c})$	
Properties: $ (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) $ $ (\vec{a} + \vec{b}) = \vec{c} + \vec{c} + \vec{c} $	
Properties: $ (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) $ $ c(\overline{a} + \overline{b}) = c\overline{a} + c\overline{b} $	
Properties: $ (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) $ $ c(\overline{a} + \overline{b}) = c\overline{a} + c\overline{b} $ $ (c+d) \overline{a} = c\overline{a} + d\overline{a} $	
Properties: $ (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) $ $ c(\overline{a} + \overline{b}) - c\overline{a} + c\overline{b} $ $ (c+d)\overline{a} = c\overline{a} + d\overline{a} $	
Propolizo: $ (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) $ $ c(\overline{a} + \overline{b}) = c\overline{a} + c\overline{b} $ $ (c+d)\overline{a} = c\overline{a} + d\overline{a} $ $ c(d\overline{a}) = (c\overline{d})\overline{a} $	
Properties: $ (\hat{a} + \hat{b}) + \hat{c} = \hat{a} + (\hat{b} + \hat{c}) $ $ c(\hat{a} + \hat{b}) = c\hat{a} + c\hat{b} $ $ (c+d)\hat{a} = c\hat{a} + d\hat{a} $ $ c(d\hat{a}) = (cd)\hat{a} $	
Propelies: $ (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) $ $ c(\overline{a} + \overline{b}) - c\overline{a} + c\overline{b} $ $ (c+d)\overline{a} = c\overline{a} + d\overline{a} $ $ c(d\overline{a}) = (c\overline{d})\overline{a} $ $ 1 \overline{a} = \overline{a} $	

The length of a vector is the Euclidem lerste of the displacement $\left| \frac{2}{A} \right| = \sqrt{a_1^2 + a_2^2 + a_3^2}$ $\left(\int (\Delta x)^2 + (\Delta y)^2 + (\Delta z^2)\right)$ $|c\bar{a}| = |c||\bar{a}|$ $\left|\vec{a}+\vec{b}\right| = \left|\vec{a}\right| + \left|\vec{b}\right|$? Nope. à+6 77 $|\vec{a}+\vec{b}| \leq |\vec{a}| + |\vec{b}|$

Common operation:
ū = < (5, 2, 4>
$ \vec{u} ^2 = 5 + 4 + 16 = 25$
$ \vec{\alpha} = 5$
$\frac{1}{5}\vec{x} = \left\langle \frac{J5}{5}, \frac{2}{5}, \frac{4}{5} \right\rangle$
$\left \frac{1}{5}\vec{u}\right = \left \frac{1}{5}\right \vec{u} = \frac{1}{5}\cdot 5 = 1$
We say $\frac{1}{5}$ is a unit vector.
It points perallel to it but has and

Lesth,
We give runes to three unit vectors That point along the coordinate axos:
$\vec{l} = \langle 1, 0, 0 \rangle$ $\vec{J} = \langle 0, 1, 0 \rangle$ $\vec{k} = \langle 0, 0, 1 \rangle$ $\vec{k} = \langle 0, 0, 1 \rangle$
(standard busis vectors) These depend on your coordinates.
O is special. È is not.
$\vec{a} = \langle a_1, a_2, a_3 \rangle$ = $a_1\vec{c} + a_2\vec{j} + a_3\vec{k}$

Other vectorial quantities · velocity ("1/5) a acceleration (1/5) The other parts are "decomption" $(kg M/s^2 = N)$ (15%) · force 1 veerer $\frac{P(t_0) - P(t_0)}{t_1 - t_0} \quad \frac{d_{1}st}{t_1 - t_0}$ send to to and set an instantonems velocity. All the rules thus for also apply to These physical variations of desplacement vertes