Transformers, an Introduction

David Maxwell November 26, 2024

University of Alaska Fairbanks

- Words and bits of text are represented as tokens.
- An LLM is a (deterministic) map from a sequence of tokens to a probability distribution over tokens.
- The probability distribution predicts the next token that follows the sequence.
- The GPT-2 (2019) and GPT-3 (2022) processing pipelines have three phases:
 - 1 Embedding tokens to latent space
 - 2 A stack of transformers
 - **3** Final stage conversion to a probability distribution.

Input text is broken into a sequence of tokens:

Tokens

Input text is broken into a sequence of tokens:

Tokens are represented by small integers:

6854	21398	527	11919	323	5603	481	13
------	-------	-----	-------	-----	------	-----	----

Tokens

Input text is broken into a sequence of tokens:

Tokens are represented by small integers:

- Roundtrip unicode text to token sequence to unicode text is lossless.
- GPT-2 has a vocabulary of roughly 50000 tokens.
- GPT-3.5: 100000 tokens.

GPT-2 is a function, depending on a very large number of numerical parameters.

Input: A sequence of up to 1024 tokens (the context window).

Output: A probability distribution over tokens.

The Iteration

6854	21398	527	11919	323	5603	481	13	\longrightarrow	GPT	
								-		

Tokens are immediately converted to vectors.

Tokens are immediately converted to vectors. (Actual dimension: 768 for GPT-2)

Main Pipeline

A map $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear if:

 $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ $f(c\mathbf{x})a = cf(\mathbf{x})$

for all inputs \mathbf{x} and \mathbf{y} and all numbers c.

A map $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear if:

 $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ $f(c\mathbf{x})a = cf(\mathbf{x})$

for all inputs \mathbf{x} and \mathbf{y} and all numbers c.

- We can represent such a map via a collection of *n* · *m* weights
- GPUs are great at computing these

"Weight and balance" steps keep vectors in latent space at a reasonable size.

"Weight and balance" steps keep vectors in latent space at a reasonable size.

"Weight and balance" steps keep vectors in latent space at a reasonable size.

- 1 Remove the mean
- 2 Scale to unit variance

"Weight and balance" steps keep vectors in latent space at a reasonable size.

- 1 Remove the mean
- 2 Scale to unit variance

3 Training: new scale, new "zero vector"

$$(p_1, p_2, \ldots, p_{50000}), \quad p_i \ge 0, \quad \sum_{i=1}^{50000} p_i = 1$$

$$(p_1, p_2, \ldots, p_{50000}), \quad p_i \ge 0, \quad \sum_{i=1}^{50000} p_i = 1$$

softmax

1 Start with arbitrary $(w_1, w_2, ..., w_{50000})$

$$(p_1, p_2, \ldots, p_{50000}), \quad p_i \ge 0, \quad \sum_{i=1}^{50000} p_i = 1$$

softmax

1 Start with arbitrary $(w_1, w_2, ..., w_{50000})$ 2 Make $(q_1, q_2, ..., q_{50000})$ with $q_i = e^{w_i}$

• Observe
$$q_i \ge 0$$

$$(p_1, p_2, \ldots, p_{50000}), \quad p_i \ge 0, \quad \sum_{i=1}^{50000} p_i = 1$$

softmax

1	Start with arbitrary $(w_1, w_2, \ldots, w_{50000})$
2	Make $(q_1, q_2,, q_{50000})$ with $q_i = e^{w_i}$
	• Observe $q_i \ge 0$
3	Let $q_{\text{total}} = q_1 + q_2 + \dots + q_{50000}$
4	Then $p_i = q_i/q_{\text{total}}$

Ingredient: Thin Neural Net (Feedforward Layer)

Main Pipeline

Final Output

Stack of Transformers

- Natural language translation
- Distant information needs to be associated

I get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

- Natural language translation
- Distant information needs to be associated

I get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

- Natural language translation
- Distant information needs to be associated

I get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

- Natural language translation
- Distant information needs to be associated

I get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

- Natural language translation
- Distant information needs to be associated

I get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

- Natural language translation
- Distant information needs to be associated

I get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

Bahdanau et. al, Neural Machine Translation by Jointly Learning to Align and Translate, 2014. (for additive attention)

Combining information = convex combinations

 $\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + b_3 \mathbf{v}_3$ $0 \le b_i \le 1$ $b_1 + b_2 + b_3 = 1$

Combining information = convex combinations

 $\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + b_3 \mathbf{v}_3$ $0 \le b_i \le 1$ $b_1 + b_2 + b_3 = 1$

Attention Module

Attention Module

Attention Module

Determination of Weights I

Dot product measures alikeness of vectors.

 $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}||\mathbf{w}||\cos\theta$ $= v_1 w_1 + v_2 w_2 + \dots + v_n w_n$ A w

Determination of Weights II

Computing the weights a_{ij} where key *j* contributes to query *i*:

Determination of Weights II

Computing the weights a_{ij} where key *j* contributes to query *i*:

query
$$i \nearrow \rightarrow \text{LINEAR Q} \rightarrow \swarrow \text{Dot} \rightarrow a_{ij}$$

key $j \swarrow \rightarrow \text{LINEAR K} \rightarrow \swarrow \checkmark$

The weights so far don't make a convex combination.

■ Use softmax:
$$a_{ij} \rightarrow b_{ij}$$
 to ensure $0 \le b_{ij} \le 1$ and $\sum_{j} b_{ij} = 1$

The weights so far don't make a convex combination.

■ Use softmax:
$$a_{ij} \rightarrow b_{ij}$$
 to ensure $0 \le b_{ij} \le 1$ and $\sum_{j} b_{ij} = 1$

And scaling matters:

■ Use softmax:
$$a_{ij}/\sqrt{768} \rightarrow b_{ij}$$

We don't actually make convex combinations of the original vectors.

value
$$j \not \nearrow$$
 \rightarrow LINEAR $\lor \rightarrow \not \checkmark$

We don't actually make convex combinations of the original vectors.

query
$$i \nearrow \rightarrow \text{LINEAR Q} \rightarrow \checkmark$$

key $j \nearrow \rightarrow \text{LINEAR K} \rightarrow \checkmark$
value $j \checkmark \rightarrow \text{LINEAR V} \rightarrow \checkmark$

We don't actually make convex combinations of the original vectors.

One more detail: each slot can only use information from the past

One more detail: each slot can only use information from the past

Increased parallelism by having more than one attention block happen at the same time.

Attention is All You Need, Vaswani et. al., 2017

Attention is All You Need, Vaswani et. al., 2017

An LLM is a map from sequences of tokens to probability distributions over token space.

- An LLM is a map from sequences of tokens to probability distributions over token space.
- The map is deterministic, but selection of tokens from the distribution can be probabilistic.

Summary

- An LLM is a map from sequences of tokens to probability distributions over token space.
- The map is deterministic, but selection of tokens from the distribution can be probabilistic.
- The entire stream of tokens is reprocessed from scratch to generate the next token.

Summary

- An LLM is a map from sequences of tokens to probability distributions over token space.
- The map is deterministic, but selection of tokens from the distribution can be probabilistic.
- The entire stream of tokens is reprocessed from scratch to generate the next token.
- The inner machinery is implemented entirely out of familiar mathematical maps:
 - Linear maps
 - Dot products, scaling, vector addition
 - Element-wise activation functions
 - softmax

Fin

Thank you!

GPT-2: ~125M parameters

- **1** EMB and OUT linear maps: 40%
- 2 Feed forward 45%
- 3 Attention linear maps: 15%

GPT-3: ~175B parameters

- **1** EMB and OUT linear maps: 20%
- 2 Feed forward 60%
- 3 Attention linear maps: 20%