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Previously, on LLMs for the People

m Words and bits of text are represented as tokens.

m An LLM is a (deterministic) map from a sequence of tokens to a probability
distribution over tokens.

m The probability distribution predicts the next token that follows the
sequence.
m The GPT-2 (2019) and GPT-3 (2022) processing pipelines have three phases:

Embedding tokens to latent space
A stack of transformers
Final stage conversion to a probability distribution.
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Tokens

Input text is broken into a sequence of tokens:

Can||adians|| are|| friendly|| and|| approach able[l

Tokens are represented by small integers:

6854 || 21398 || 527 || 11919 || 323 || 5603 || 481 || 13

m Roundtrip unicode text to token sequence to unicode text is lossless.
m GPT-2 has a vocabulary of roughly 50000 tokens.
m GPT-3.5: 100000 tokens.



The basic function

GPT-2 is a function, depending on a very large number of numerical parameters.
Input: A sequence of up to 1024 tokens (the context window).

Output: A probability distribution over tokens.
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Latent Space

Tokens are immediately converted to vectors.
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Latent Space

Tokens are immediately converted to vectors. (Actual dimension: 768 for GPT-2)
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Ingredient: Linear Maps
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flx+y) = f(x) + ()
f(ex)a = cf (x)

for all inputs x and y and all numbers .




Ingredient: Linear Maps

Amap f:R" > R™ is linear if:
fx+y) = f(x) + £(y)
f(ex)a=cf(x)

for all inputs x and y and all numbers .

m We can represent such a map via a
collection of n- m weights

m GPUs are great at computing these
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Ingredient: Weight and Balance

“Weight and balance” steps keep vectors in latent space at a reasonable size.
Remove the mean
Scale to unit variance

0 2 4 6 8 10
k

Training: new scale, new “zero vector”
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Ingredient: softmax

The final output is a probability distribution:

50000

(p1>P2>--->P50000)> Pi>0, Z pi=1
i=1

token #

softmax
Start with arbitrary (wy, wa, ..., ws0000)

Make (g1, g2, - - - » g50000) With g; = "
» Observe g; >0

Let Grotal = 1 + G2 + *+* + 50000
Then pi= q:‘/qtotal



Ingredient: softmax
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Ingredient: softmax

Scale matters:

x/6 > p

Probabilities from softmax
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Ingredient: Thin Neural Net (Feedforward Layer)

GELU
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Token Embedding
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Final Output

AAA--7 — [ OUT | — ‘ D

mEE-{2) > 2 - [ - o - 5o - |




Stack of Transformers

pEE--m — | T | — EEE-=

| | Vi

N

12 of these

- ZEA--A



Motivation for Attention

m Natural language translation
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Motivation for Attention

m Natural language translation

m Distant information needs to be associated

| get up at 6:30 in the morning.

Morgens stehe ich um halb sieben auf.

Bahdanau et. al, Neural Machine Translation by Jointly Learning to Align and
Translate, 2014. (for additive attention)




Combining information = convex combinations
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Vi

V= b1V1 + szz + bgV3
V3 0<b; <1

b1+b2+b3:1
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Attention Module

Morgens stehe ich um halb sieben auf
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Attention Module

Morgens stehe ich um halb sieben auf
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Determination of Weights |

Dot product measures alikeness of vectors.
v-w = |[v|]|w]| cos 0

= VWL VoW + o+ VW




Determination of Weights Il

Computing the weights a;; where key j contributes to query i
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Determination of Weights II

Computing the weights a;; where key j contributes to query i
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Determination of Weights IlI

The weights so far don’t make a convex combination.

m Use softmax: a;; - b;; to ensure 0 < bjj<land ¥ b;; =1

And scaling matters:

m Use softmax: a;j/\/768 — b;;
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Projections

We don’t actually make convex combinations of the original vectors.

query i [Z] > [LNeARQ| > [/]
keyj [7] > [LNEARK]| > [7]
valuej [Z] - |LINEARV| > [/




Projections

We don’t actually make convex combinations of the original vectors.
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Causality

One more detail: each slot can only use information from the past
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Causality

One more detail: each slot can only use information from the past

Morgens stehe ich um halb sieben auf
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The Truth about OUT
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The Truth about OUT
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Multihead Attention

Increased parallelism by having more than one attention block happen at the

same time.
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A Single Transformer

Attention is All You Need, Vaswani et. al., 2017
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A Single Transformer

Attention is All You Need, Vaswani et. al., 2017
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Summary

m An LLM is a map from sequences of tokens to probability distributions over
token space.

m The map is deterministic, but selection of tokens from the distribution can
be probabilistic.

m The entire stream of tokens is reprocessed from scratch to generate the
next token.

m The inner machinery is implemented entirely out of familiar mathematical
maps:
» Linear maps
» Dot products, scaling, vector addition
» Element-wise activation functions
» softmax



Thank you!



Parameter Counts

GPT-2: ~125M parameters

EMB and OUT linear maps: 40%
Feed forward 45%
Attention linear maps: 15%



Parameter Counts

GPT-3: ~175B parameters

EMB and OUT linear maps: 20%
Feed forward 60%
Attention linear maps: 20%



