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1 Overview

I’m not sure now, at the beginning, how this tale ends. With luck I’m going to learn some-
thing new. Maybe you will, too.

These notes develop an intrinsically coordinate-free approach to classical mechanics and
field theory. We are motivated by the Einstein equations of general relativity, where there
is no preferred notion of time and the subject is permeated with issues arising from dif-
feomorphism group gauge freedom. In order to understand these difficulties better, and
perhaps come to some resolution of old problems, we return to the foundations and rebuild
mechanics from the ground up with a perspective that does not have in-built preferences
for a limited choice of time variables. Of course, coordinate-based results, including those
involving time, are critical and we show at every step how to recover standard results once
a time function and attendant other gauge choices are made. But the aim is to create a the-
ory that focuses on coordinate-independent constructions and generates gauge-dependent
formulations after the fact.

As a by-product of this work, we construct a formulation of Lagrangian mechanics, and
its Hamiltonian counterpart, that smoothly transitions from single particle dynamics to
classical fields (e.g, scalar fields, Yang-Mills connections), dust and other isentropic fluids
(both filling spacetime and configurations with boundaries), as well as Vlasov matter dis-
tributions. Gauge theories are emphasized along the way, even in settings that would not
normally fall under the umbrella of gauge theory. The hope is that by approaching easy
things like particle mechanics the hard way, we gain insight into how to attack the truly
harder problems stemming from general relativity.

These notes are not for everyone. There’s a good chance that theymight not even be for you.
In particular, they are not intended to be a first exposure to abstract mechanics. There are
many excellent texts already for this, including [GPS08] and [Ar97]. For readers already
well-versed in modern differential geometry at the level of [Le13] we can recommend [?]
and especially the delightful [Sp10]. For readers already familiar with themechanics, I hope
that the route taken through what is already well-traveled territory will feel unusual.
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2 Actions on Curves

The standard notion of a Lagrangian on a manifold 𝑀𝑑 is simply a real-valued function
on 𝑇𝑀. Let 𝐼 = [𝑡0, 𝑡1] be a closed interval with coordinate 𝑡. Then the action of a curve
𝛾 ∶ 𝐼 → 𝑀 is

𝑆𝐿[𝛾] = ∫
𝐼
𝐿( ̇𝛾) 𝑑𝑡.

Lagrangian mechanics considers curves such that the action is stationary under perturba-
tion, associated Hamiltonian theory, and so forth; we assume that this is already a familiar
story.

The role of the time variable 𝑡 is somewhat special in this formalism: there is a specific 1-
form 𝑑𝑡 that appears in the integrand, whereas no particular coordinate on𝑀 is essential.
If we were to reparameterize 𝐼 with a different coordinate, 𝑡 = 𝑡( ̃𝑡) say, then generically
̃𝑡 would appear explicitly in the integrand. In particular, the integrand would no longer

be a Lagrangian in the sense above. One can handle this situation by introducing time-
dependent Lagrangians, maps on 𝑇𝑀 × 𝐼 with associated actions ∫𝐼 𝐿( ̇𝛾, 𝑡) 𝑑𝑡. The class of
time-dependent Lagrangians is closed under time reparameterization, but now the differ-
ence between space and time has become even more pronounced.

Our first goal is to give a “coordinate-free” description of Lagrangians on curves where all
coordinates are treated on an equal footing. With luck, this approach clarifies the theory in
a manner similar to, e.g., the coordinate-free description of the tangent bundle of a man-
ifold. Moreover, it allows us to build up an apparatus used to smoothly transition from
Lagrangians associated with particles to Lagrangians associated with fields and fluids. All
this comes, however, at the expense of some abstraction. To keep things simple, in this sec-
tion we treat the case of Lagrangians over curves, essentially particle mechanics. Section 4
addresses the case of Lagrangians on higher-dimensional surfaces needed for field theory,
and the machinery there is a modest generalization of the material from this section.

Before moving on, we summarize some basic definitions.
awkward

Definition 2.1. Let 𝑀𝑑 be a manifold and let 𝐼 ⊂ ℝ be an interval. A smooth map from
𝑇𝑀×𝐼 toℝ is a classical (time-dependent) Lagrangian. We use this same term for smooth
maps 𝑈 × 𝐼 → ℝ where 𝑈 ⊂ 𝑇𝑀 is open. If 𝐿 is a classical Lagrangian and 𝐿(𝑣, 𝑡) is
independent of 𝑡 ∈ 𝐼, we say that 𝐿 is time independent. If 𝐽 is a compact subinterval of
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of 𝐼 and 𝛾 ∶ 𝐽 → 𝑀 is a curve, the action of 𝛾 with respect to 𝐿 is

𝑆𝐿[𝛾] = ∫
𝐽
𝐿( ̇𝛾, 𝑡) 𝑑𝑡. (2.1)

2.1 Densities on Lines

Let 𝑉 be a one dimensional vector space, which we will call a line. A density on 𝑉 is a map
𝜇 ∶ 𝑉 → ℝ satisfying

𝜇(𝑐𝑣) = |𝑐| 𝜇(𝑣) (2.2)

for any 𝑣 ∈ 𝑉 . The space𝒟𝑉 of densities on 𝑉 is closed under taking linear combinations,
and it is straightforward to see that the space is one-dimensional. Indeed, there is a close
relationship between densites on 𝑉 and elements of the dual space 𝑉∗. If 𝜂 ∈ 𝑉∗ then 𝜂
determines a density |𝜂| via

|𝜂|(𝑣) = |𝜂(𝑣)|.
Using equation (2.2), it’s easy to see that a density is determined by its action on a single
𝑣 ∈ 𝑉 and as a consequence, if 𝜂 ∈ 𝑉∗ ⧵ {0} then any density on 𝑉 is a multiple of |𝜂|.

Let Γ be a one-dimensional manifold. The density bundle over Γ is

𝒟(𝑇Γ) =∐
𝑞∈Γ

𝒟(𝑇𝑞𝑀)

which can be given the structure of a line bundle over𝑀 in the usual way. If 𝜇 is a section
of 𝒟(𝑇Γ) we can integrate 𝜇 over compact sets of Γ. As a concrete example, suppose 𝐼 =
[𝑡0, 𝑡1] ⊂ ℝ and 𝛾 ∶ 𝐼 → Γ is a smooth curve with ̇𝛾 ≠ 0 everywhere. Then

∫
𝛾(𝐼)

𝜇 = ∫
𝑡1

𝑡0
𝜇( ̇𝛾) 𝑑𝑡.

For full details on integration of densities, including the construction in higher dimensions,
see [Le13] Chapter 16.
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2.2 Densities over Projective Tangent Bundles

Let 𝑉 be a 𝑑-dimensional vector space. The projective space over 𝑉 is the set of lines
through the origin in𝑉 , andwedenote it byG1(𝑉). More generally, the set of𝑘-dimensional
subspaces of 𝑉 is called the Grassmannian of order 𝑘 over 𝑉 and is written G𝑘(𝑉), but for
now we will only be interested in the case 𝑘 = 1.

Let𝑀𝑑 be a manifold. The projective tanget bundle of𝑀 is

G1(𝑇𝑀) = ∐
𝑞∈𝑀

G1(𝑇𝑞𝑀)

which can be given the structure of a fiber bundle over𝑀 with fiber ℝ𝑃𝑑.

Each line ℓ ∈ G1(𝑇𝑀) has an associated space𝒟(ℓ) of densities over it. The set of all such
densities form the line densities over𝑀,

𝒟G1(𝑇𝑀) = ∐
ℓ∈G1(𝑇𝑀)

𝒟(ℓ)

and a standard construction gives 𝒟G1(𝑇𝑀) the structure of a line bundle over G1(𝑇𝑀).
Thenotationhere ismore formidable than the concept it describes. Each element of𝒟G1(𝑇𝑀)
can be thought of as a line in some 𝑇𝑞𝑀 along with a particular density on that line.

2.3 Fundamental Lagrangians

The machinery reviewed up to this point allows for a simple coordinate-free description of
Lagrangians defined on curves.

Definition 2.2. Let 𝑀 be a manifold. A fundamental Lagrangian on 𝑀 is a section ℒ of
𝒟G1(𝑇𝑀) over an open subset of G1(𝑇𝑀).

In Section 4 we generalize this definition to Lagrangians over higher-dimensional objects
involving G𝑘(𝑇𝑀) with 𝑘 > 1. But for the remainder of this section, a fundamental La-
grangian refers to the object from Definition 2.2. The word Lagrangian by itself ought to
refer to a fundamental Lagrangian, in the sense that classical Lagrangians are coordinate-
dependent representations of a fundamental Lagrangian (Section 2.6). Nevertheless, we
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bow to historical precedent and refrain from using the word Lagrangian without a modi-
fier. Indeed, the following section introduces a third related object, a pragmatic Lagrangian,
which can be used to represent a fundamental Lagrangian. Unlike classical Lagrangians,
these are coordinate independent objects. Moreover, they are easier to work with than the
rather abstract notion of a fundamental Lagrangian, but they suffer from the drawback
that a fundamental Lagrangian is represented by many pragmatic Lagrangians. The point
here is that other varieties of Lagrangian each describe a fundamental Lagrangian but do so
with some kind of deficiency. Nevertheless, all three objects are important. To distinguish
them notationally, we use roman 𝐿 to for classical Lagrangians, script ℒ for fundamental
Lagrangians, and double struck 𝕃 for the yet-to-be defined pragmatic Lagrangians.

Mechanically, a fundamental Lagrangian is a mapℒ that consumes a line in some 𝑇𝑞𝑀 and
yields a density on the very same line. We allow the section to not be defined globally on
all of G1(𝑇𝑀) because we might need to restrict the allowable lines to, say, timelike lines
in a Lorenzian manifold. The main job of a Lagrangian is to assign a number, the action,
to allowable curves. To describe this process, let ℒ be a Lagrangian on 𝑀 and let Γ be a
1-dimensional submanifold of 𝑀 diffeomorphic to a compact interval in ℝ; we call Γ an
interval in𝑀. An interval Γ in𝑀 such that each 𝑇𝑞Γ lies in the domain of ℒ is admissible
with respect to ℒ.

Suppose Γ is an admissible interval in𝑀 with respect to a fundamental Lagrangian ℒ. Let
𝜄 ∶ Γ → 𝑀 be the natural embedding and fix 𝑞 ∈ Γ. Observe that 𝜄∗(𝑇𝑞Γ) is a line in 𝑇𝑞𝑀.
Hence ℒ[𝜄∗(𝑇𝑝Γ)] is a density on 𝜄∗(𝑇𝑝Γ); we use square brackets whenever an extended
body such as a subspace or a manifold is the argument of a function. If 𝑣 ∈ 𝑇𝑞Γ then 𝜄∗𝑣
lies in 𝜄∗(𝑇𝑞Γ) and is therefore a suitable argument for ℒ[𝜄∗(𝑇𝑞Γ)]. We define

𝜄∗ℒ(𝑣) = (𝜄∗𝑣) ⨼ ℒ[𝜄∗(𝑇𝑞Γ)]

and it is easy to see that 𝜄∗ℒ is indeed a density on Γ. The action of Γ with respect to ℒ is
simply

𝑆ℒ[Γ] = ∫
Γ
𝜄∗ℒ. (2.3)

In practice, to compute 𝑆[Γ] we parameterize Γ with a map 𝛾 ∶ [𝜆0, 𝜆1] → ℳ with ̇𝛾 ≠ 0.
Then, upon unwinding definitions, we find

𝑆ℒ[Γ] = ∫
𝜆1

𝜆0
̇𝛾 ⨼ ℒ[span ̇𝛾] 𝑑𝜆. (2.4)
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Because the action from (2.3) depends only on Γ, the quantity on the right-hand side of
equation (2.4) is inherently independent of the choice of parameterization.

We are interested in intervals in𝑀 for which 𝑆ℒ is stationary. It will be some time (Section
4.10) before we have the “right” tools for finding stationary intervals. But at this point we
can at least define what we are looking for.

Definition 2.3. Let ℒ be a fundamental Lagrangian on𝑀𝑑. An admissible interval Γ in𝑀
is stationary for 𝑆ℒ if whenever Ψ𝑠 is a smooth family of maps Γ → 𝑀 such that Ψ0 = 𝜄
(where 𝜄 is the natural embedding) and such that Ψ𝑠|𝜕Γ = 𝜄|𝜕Γ for all 𝑠,

𝑑
𝑑𝑠
|||𝑠=0

𝑆ℒ[Ψ𝑠(Γ)] = 0.

Note that a compactness argument shows that Ψ𝑠(Γ) in Definition (2.3) is an admissible
interval for 𝑠 sufficiently small and hence 𝑆ℒ[Ψ𝑠(Γ)] is well-defined.

The integrand appearing in equation (2.4) appears sufficiently frequently that we introduce
notation for it. The action density associated with a fundamental Lagrangian is the real-
valued map

𝕤ℒ(𝑣) = 𝑣 ⨼ ℒ[span 𝑣] (2.5)

defined for 𝑣 ∈ 𝑇𝑀 such that span 𝑣 is in the domain ofℒ. In effect, 𝕤ℒ is the infinitesimal
contribution to the action of a curve as it is traversed with tangent 𝑣. The following result is
an immediate consequence of the definitions and is related to parameterization invariance
of the action.

Lemma 2.4. Let 𝕤ℒ be the action density of a fundamental Lagrangian 𝐿. For any 𝑣 such that
span 𝑣 is in the domain of ℒ,

𝕤ℒ(𝛼𝑣) = |𝛼| 𝕤ℒ(𝑣) (2.6)

for all nonzero 𝛼 ∈ ℝ.

In fact, one can show that amap satisfying equation (4.7) uniquely determines a fundamen-
tal Lagrangian, but this perspective generalizes less naturally to fundamental Lagrangians
over higher-dimensional surfaces.
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2.4 Pragmatic Lagrangians

As tidy as Definition 2.2 is, it is cumbersome to use in practice, and the following construc-
tion is easier to work with.

Definition 2.5. Let 𝑀 be a manifold, and let 𝑈 be an open subset of 𝑇𝑀 consisting of
nonzero vectors such that whenever 𝑣 ∈ 𝑈 , 𝛼𝑣 ∈ 𝑈 for all 𝛼 ≠ 0. A pragmatic La-
grangian on 𝑈 is a smooth map 𝕃 ∶ 𝑈 → 𝑇∗𝑀 satisfying the following:

1. If 𝑣 ∈ 𝑇𝑞𝑀 then 𝕃(𝑣) ∈ 𝑇∗𝑞 (𝑀); i.e., 𝕃 is a bundle map.

2. For any 𝑣 ∈ 𝑇𝑞𝑀 and 𝛼 ∈ ℝ>0, 𝕃(𝛼𝑣) = 𝕃(𝑣)

3. 𝕃(−𝑣) = −𝕃(𝑣).

More succinctly, a pragmatic Lagrangian is a bundle map 𝕃 ∶ 𝑈 → 𝑇∗𝑀 satisfying

𝕃(𝛼𝑉) = 𝛼
|𝛼|𝕃(𝑉) (2.7)

for all 𝛼 ≠ 0.

Every pragmatic Lagrangian 𝕃 determines a fundamental Lagrangian ℒ𝕃 as follows. Let
ℓ ∈ G1(𝑇𝑀), so ℓ is a line in some 𝑇𝑞𝑀. For any vector 𝑤 ∈ ℓ, 𝕃(𝑤) is an element of
𝑇∗𝑞 (𝑀) and we define

𝜇ℓ(𝑤) = 𝑤 ⨼ 𝕃(𝑤)
with the convention that 𝕃(0) = 0. Note that if 𝛼 ≠ 0 then

𝜇ℓ(𝛼𝑤) = (𝛼𝑤) ⨼ 𝕃(𝛼𝑤) = 𝛼 𝛼
|𝛼|(𝑤 ⨼ 𝕃(𝑤)) = |𝛼|𝜇ℓ(𝑤).

Since we have declared 𝕃(0) = 0 by fiat it follows that 𝜇ℓ(0) = 0 and we conclude 𝜇ℓ is
indeed a density on ℓ. We define ℒ𝕃[ℓ] = 𝜇ℓ and call ℒ𝕃 the fundamental Lagrangian
induced by the pragmatic Lagrangian 𝕃.

What Definition 2.5 gains in concreteness it loses in redundancy. More than one pragmatic
Lagrangian can induce the same fundamental Lagrangian, and indeed much of the infor-
mation in a pragmatic Lagrangian is lost when passing to the fundamental Lagrangian it
induces. To see this, note that by definition, if ℓ ∈ G1(𝑇𝑀) and 𝑤 ∈ ℓ then

𝑤 ⨼ ℒ𝕃[ℓ] = 𝑤 ⨼ 𝕃(𝑤). (2.8)
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Consequently the covector 𝕃(𝑤) impacts ℒ𝕃 only in its application to the line ℓ and the
addition of a covector that annihilates ℓ would leave the induced fundamental Lagrangian
unchanged. The following result shows, however, that every fundamental Lagrangian is
induced by a pragmatic Lagrangian; in effect the space of fundamental Lagrangians is a
quotient of the space of pragmatic Lagrangians.

Lemma 2.6. Letℒ be a fundamental Lagrangian on𝑀. There exists a pragmatic Lagrangian
𝕃 on𝑀 that induces ℒ:

ℒ = ℒ𝕃.

Proof. Let 𝑔 be a metric on𝑀. For any 𝑤 ∈ 𝑇𝑀 and span𝑤 in the domain of ℒ define

𝕃(𝑤) = (𝑤 ⨼ ℒ[span𝑤]) 1
|𝑤|2𝑔

𝑤♭

where𝑤♭ is the covector dual (via 𝑔) to𝑤. Note that span 0 is never in the domain ofℒ and
hence there is no division by zero in this definition. Since 𝕃 is evidently a bundle map of
the right type, to show that it is a pragmatic Lagrangian we need only show that it satisfies
the scaling property (2.7). But if 𝛼 ≠ 0 then

𝕃(𝛼𝑤) = ((𝛼𝑤)⨼ℒ[span𝛼𝑤]) 1
|𝛼𝑤|2𝑔

(𝛼𝑤)♭ = |𝛼|(𝑤⨼ℒ[span𝑤]) 1
|𝛼|2|𝑤|2𝑔

𝛼𝑤♭ = 𝛼
|𝛼|𝕃(𝑤)

as required.

To see that ℒ = ℒ𝕃, consider some line ℓ in the domain of ℒ and pick 𝑤 ∈ ℓ with 𝑤 ≠ 0.
By definition

𝑤 ⨼ ℒ𝕃[ℓ] = 𝑤 ⨼ 𝕃(𝑤) = (𝑤 ⨼ ℒ[span𝑤]) 1
|𝑤|2𝑔

𝑤♭(𝑤)

= 𝑤 ⨼ ℒ[span𝑤]
= 𝑤 ⨼ ℒ[ℓ].

Two line densities are the same if they agree for a single nonzero vector and hence ℒ[ℓ] =
ℒ𝕃[ℓ].

Note that the proof of Lemma 2.6 relies on a choice of metric, which reflects the fact that
fundamental Lagrangians are not uniquely represented by pragmatic Lagrangians. This
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phenomenon generally does not cause difficulty, but see Section ?? where nonuniqueness
ref

needs to be taken into account.

The action of in interval with respect to a fundamental Lagrangian can be easily computed
in terms of a pragmatic Lagrangian that induces it. Indeed, let 𝕃 be a pragmatic Lagrangian
on 𝑀 with induced fundamental Lagrangian ℒ𝕃 and let Γ an ℒ-admissible interval in 𝑀.
Unwinding definitions, if 𝛾 ∶ [𝜆0, 𝜆1] → Γ is a parameterization of Γ with ̇𝛾 ≠ 0 then

𝑆ℒ𝕃[Γ] = ∫
𝜆1

𝜆0
̇𝛾 ⨼ 𝕃( ̇𝛾) 𝑑𝑡. (2.9)

2.5 Examples

2.5.1 Arclength

Let (𝑀, 𝑔) be a Riemannian manifold. For any 𝑣 ∈ 𝑇𝑀 define

𝕃arc(𝑣) =
1
|𝑣|𝑔

𝑣♭ = 1
|𝑣|𝑔

𝑔𝑎𝑏𝑣𝑏.

One readily verifies that 𝕃arg is indeed a pragmatic Lagrangian and we denote its induced
Lagrangian byℒarc. If Γ is an interval in𝑀 parameterized by a curve 𝛾 ∶ [𝑡0, 𝑡1] → 𝑀 then
equation (2.9) implies

𝑆ℒarc[Γ] = ∫
𝑡1

𝑡0
̇𝛾 ⨼ 𝕃arc( ̇𝛾) 𝑑𝑡 = ∫

𝑡1

𝑡0

1
| ̇𝛾|𝑔

| ̇𝛾|2𝑔 𝑑𝑡 = ∫
𝑡1

𝑡0
| ̇𝛾|𝑔 𝑑𝑡,

which is precisely the arclength of Γ.

Alternatively, consider a line ℓ in some 𝑇𝑞𝑀 and let 𝜄ℓ be the natural embedding of ℓ into
𝑇𝑞𝑀. Then 𝑔ℓ ∶= 𝜄∗ℓ 𝑔 is a Riemannian metric on ℓ with Riemannian density 𝑑𝑉𝑔ℓ and it is

check
Jack’s
notation

easy to see that ℒarc[ℓ] = 𝑑𝑉𝑔ℓ

2.5.2 Proper time

This example is a minor modification of the previous example, but shows how the domain
of a Lagrangian may need to be a restricted set of lines.
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Let (𝑀, 𝑔) be a Lorentzian manifold with signature (−,+,⋯ ,+). For timelike vectors 𝑣 ∈
𝑇𝑀 with 𝑣 ≠ 0 define

𝕃time(𝑣) = − 1
(−𝑔(𝑣, 𝑣))−1/2𝑣

♭ = − 1
(−𝑔(𝑣, 𝑣))−1/2𝑔𝑎𝑏𝑣

𝑏.

A calculation analogous to the one above for arclength shows that 𝕃time is a pragmatic La-
grangian inducing a fundamental Lagrangianℒtime. IfΓ is a timelike interval parameterized
by a curve 𝛾 ∶ [𝑡0, 𝑡1] → 𝑀, then

𝑆ℒtime[Γ] = ∫
𝑡1

𝑡0
(−𝑔( ̇𝛾, ̇𝛾))1/2 𝑑𝑡

is the proper time elapsed along Γ. Moreover, if ℓ is a timelike line in some tangent space
𝑇𝑞𝑀 then −𝑔 induces a Riemannian metric on ℓ and ℒtime is its Riemannian density on ℓ.

2.5.3 Classical Mechanics

Consider 𝑀𝑑+1 = Σ𝑑 × 𝐼 where 𝐼 = [𝑡0, 𝑡1] is an interval with coordinate 𝑡. Let 𝜋Σ be
projection onto the first factor and let 𝜕𝑡 be the unique vector field with (𝜋Σ)∗𝜕𝑡 = 0 such
that 𝑑𝑡(𝜕𝑡) = 1.

Let 𝐿 ∶ 𝑇Σ×𝐼 → ℝ be a classical Lagrangian. We define a pragmatic Lagrangian as follows.
Suppose 𝑣 ∈ 𝑇𝑞𝑀 such that 𝑑𝑡(𝑣) ≠ 0 and decompose 𝑣 = 𝛽(𝑤 + 𝜕𝑡) where 𝑑𝑡(𝑤) = 0.
Setting 𝑞 = (𝑥, 𝑡) we can identify 𝑤 as an element of 𝑇𝑥Σ and we define

𝕃(𝑣) ∶= 𝛽
|𝛽|𝐿 (𝑤, 𝑡) 𝑑𝑡. (2.10)

Note that 𝛽 and 𝑤 are implicit functions of 𝑣: 𝛽 = 𝑑𝑡(𝑣) ≠ 0 and 𝑤 = 𝛽−1𝑣 − 𝜕𝑡. If 𝛼 ≠ 0
then

𝕃(𝛼𝑣) = 𝛼𝛽
|𝛼𝛽|𝐿(𝑤, 𝑡) 𝑑𝑡 =

𝛼
|𝛼|

𝛽
|𝛽|𝐿(𝑤, 𝑡) 𝑑𝑡 =

𝛼
|𝛼|𝕃(𝑣).

Hence 𝕃 defines a pragmatic Lagrangian.

Let Γ be the diffeomorphic image of a curve 𝛾 ∶ [𝑡0, 𝑡1] → 𝑀 parameterized by 𝑡. So
𝛾(𝑡) = (𝑥(𝑡), 𝑡) for some curve 𝑥(𝑡) in Σ. From equations (2.9) and (2.10) along with the
identity 𝑑𝑡( ̇𝛾) = 1 we compute

𝑆ℒ𝕃[Γ] = ∫
𝑡1

𝑡0
( ̇𝑥 + 𝜕𝑡) ⨼ 𝕃( ̇𝑥 + 𝜕𝑡) 𝑑𝑡 = ∫

𝑡1

𝑡0
𝐿( ̇𝑥, 𝑡) 𝑑𝑡,
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precisely the classical action of the curve 𝑥(𝑡) with respect to the classical time-dependent
Lagrangian 𝐿.

2.5.4 Actions from Covectors

Let𝑀 be amanifold and suppose 𝜏 is a non-vanishing 1-formon𝑀 that, as described below,
induces a “time orientation”. If𝑀 is equipped with a time-orientable Lorenzian metric we
can let 𝜏 = 𝑔(𝑇, ⋅) for any non-vanishing timelike vector field. Alternatively, for the classical
Lagrangians of Section 2.5.3 we can take 𝜏 = 𝑑𝑡. In these settings, every covector on 𝑀
determines an action that is, in effect, integration of the covector.

To see this, consider a 1-form 𝜂 on𝑀 and define

𝕃(𝑣) = 𝜏(𝑣)
|𝜏(𝑣)|𝜂.

for vectors 𝑣 with 𝜏(𝑣) ≠ 0. It is easy to see that 𝕃 is a pragmatic Lagrangian. Suppose Γ is
an interval in𝑀 with tangent spaces transverse to the kernel of 𝜏. Without loss of generality
we can parameterize Γ with a curve 𝛾 ∶ [𝑡0, 𝑡1] → 𝑀 satisfying 𝜏( ̇𝛾) > 0 and we find

𝑆ℒ𝕃[Γ] = ∫
𝑡1

𝑡0
𝜂( ̇𝛾) 𝑑𝑡. (2.11)

Alternatively, we induce an orientation on the tangent spaces ofΓ by declaring 𝑣 is positively
oriented if 𝜏(𝑣) > 0. Giving Γ this orientation, the computation of equation (2.11) shows

𝑆ℒ𝕃[Γ] = ∫
Γ
𝜂.

In particular, Stokes’s Theorem can be used to show that closed 1-forms lead to actions
that are constant under perturbations of Γ leaving its endpoints fixed. Hence we arrive at
a rendition of the standard observation that the stationary curves of a classical action are
unchanged if an exact differential is added to the integrand.

2.6 Time Evolution

The coordinate-free description of a curve Lagrangian is conceptually simple but fails to
This
section
isn’t ready
for prime
time.
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capture the spirit of classical mechanics where the state of a system evolves in time. In this
section we show how to recover this perspective from a fundamental Lagrangian, and that
essentially any coordinate can play the role of the time coordinate. This freedom to allow
any variable “be time” shows up in orbital mechanics where the evolution variable is an
angle.

We begin by showing that if a manifold has already been decomposed into space and time,
then the action associated with a fundamental Lagrangian can be computed in terms of a
uniquely determined classical Lagrangian, and vice-versa, so long as we restrict attention
to curves that are transverse to the time function.

Proposition 2.7. Consider a product manifold𝑀𝑑+1 = Σ𝑑 × 𝐼 where 𝐼 ⊂ ℝ is an interval
and let 𝑡 be the coordinate on 𝐼.

If ℒ is a fundamental Lagrangian on𝑀 there exists a unique classical Lagrangian 𝐿 ∶ 𝑇Σ ×
𝐼 → ℝ such that for any interval Γ in𝑀 transverse to the level sets of 𝑡,

𝑆ℒ[Γ] = ∫
𝑡1

𝑡0
𝐿( ̇𝑥, 𝑡) 𝑑𝑡 (2.12)

where 𝑥 ∶ [𝑡0, 𝑡1] → Σ is the unique path in Σ such that 𝛾(𝑡) = (𝑥(𝑡), 𝑡) is a parameterization
of Γ.

Conversely, suppose 𝐿 ∶ 𝑇Σ × 𝐼 → ℝ is a classical Lagrangian on𝑀. There exists a unique
fundamental Lagrangian on 𝑀 defined on tangent lines transverse to the level sets of 𝑡 such
that equation (2.12) holds for any interval Γ in𝑀 transverse to the level sets of 𝑡, where again
𝑥 ∶ [𝑡0, 𝑡1] → Σ is the unique curve determined by a parameterization of Γ by 𝑡.

Proof. Let ℒ be a fundamental Lagrangian on𝑀 and let 𝕃 be a pragmatic Lagrangian that
induces it. For (𝑤, 𝑡) ∈ 𝑇Σ × 𝐼 define

𝐿(𝑤, 𝑡) = (𝜕𝑡 + 𝑤) ⨼ 𝕃(𝜕𝑡 + 𝑤).

If Γ is an interval in𝑀 transverse to the level sets of 𝑡 it admits a unique parameterization
of the form 𝛾(𝑡) = (𝑥(𝑡), 𝑡) and equation (2.9) implies

𝑆ℒ[Γ] = ∫
𝑡1

𝑡0
(𝜕𝑡 + ̇𝑥) ⨼ 𝕃(𝜕𝑡 + ̇𝑥) 𝑑𝑡 = ∫

𝑡1

𝑡0
𝐿( ̇𝑥, 𝑡) 𝑑𝑡.

14



Conversely, suppose 𝐿 ∶ 𝑇Σ×𝐼 → ℝ is a classical Lagrangian. For 𝑣 ∈ 𝑇𝑀 with 𝑑𝑡(𝑣) ≠ 0
define

𝕃(𝑣) = 𝛽𝑣
|𝛽𝑣|

𝐿(𝛽−1𝑣 𝑤𝑣, 𝑡) 𝑑𝑡

where 𝛽𝑣 = 𝑑𝑡(𝑣) and where 𝑤𝑣 = 𝑣 − 𝑑𝑡(𝑣)𝜕𝑡 ∈ 𝑇Σ. As shown in Section 2.5.3, 𝕃 is a
pragmatic Lagrangian. Suppose Γ is an interval in 𝑀 transverse to the level sets of 𝑡 and
let 𝛾 ∶ [𝑡0, 𝑡1] → 𝑀 be its unique parameterization of the form 𝛾(𝑡) = (𝑥(𝑡), 𝑡). Equation
(2.9) and the observation 𝑑𝑡( ̇𝛾) = 1 imply

𝑆ℒ𝕃[Γ] = ∫
𝑡1

𝑡0
(𝜕𝑡 + ̇𝑥) ⨼ 𝕃(𝜕𝑡 + ̇𝑥) 𝑑𝑡 = ∫

𝑡1

𝑡0
𝐿( ̇𝑥, 𝑡) 𝑑𝑡.

Uniqueness in both cases follows from a localization argument. Suppose 𝐿1 and 𝐿2 are
classical Lagrangians with 𝐿1(𝑤∗, 𝑡∗) ≠ 𝐿2(𝑤∗, 𝑡∗) at some point. Then we can find a curve
(𝑥(𝑡), 𝑡) for 𝑡 near 𝑡∗ such that ̇𝑥(𝑡∗) = 𝑤∗ and such that the actions of the two curves differ
from each other. But then 𝐿1 and 𝐿2 cannot both satisfy (2.12) for the same fundamental
Lagrangian ℒ.

The argument showing that two fundamental Lagrangians ℒ1 and ℒ2 cannot both satisfy
(2.12) for the same classical Lagrangian 𝐿 is essentially similar: if they disagree on some
line ℓ transverse to the level sets of 𝑡 we can find a small interval Γ for which ℓ is a tangent
line such that the actions differ. But then (2.12) can’t hold for both ℒ1 and ℒ2.

As would be expected, uniqueness fails in Proposition 2.7 if we reconstruct pragmatic La-
grangians rather than fundamental Lagrangians. Nevertheless, it’s insightful to see this
failure explicitly. Starting with a pragmatic Lagrangian 𝕃, we can pass to the fundamental
Lagrangian determined by it and then apply the constructions of Proposition 2.7 to generate
an associated classical Lagrangian and subsequently recover from it an associated pragmatic
Lagrangian 𝕃̂. Working through these details one finds that if 𝑣 is a vector with 𝑑𝑡(𝑣) ≠ 0
then

𝕃̂(𝑣) = (𝑣 ⨼ 𝕃(𝑣)) 1
𝑑𝑡(𝑣) 𝑑𝑡.

As pragmatic Lagrangians 𝕃 and 𝕃̂ are generically different from each other: there is no rea-
son that 𝕃 would only take on values that are multiples of 𝑑𝑡. But the abstract Lagrangians
they induce are identical: if ℓ ∈ G1(𝑇𝑀) is transverse to the level sets of 𝑡 and if 𝑣 ∈ ℓ then

𝑣 ⨼ ℒ𝕃̂[ℓ] = 𝑣 ⨼ 𝕃̂(𝑣) = (𝑣 ⨼ 𝕃(𝑣)) 1
𝑑𝑡(𝑣) 𝑑𝑡(𝑣) = 𝑣 ⨼ 𝕃(𝑣) = 𝑣 ⨼ ℒ𝕃[ℓ].
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A local spacetime decomposition of𝑀𝑑+1 is a diffeomorphism from an open set𝑊 in𝑀
to a product Σ𝑑 × 𝐼. Given such a gauge we use the following notation:

• 𝑡 is projection onto the second coordinate,

• 𝜕𝑡 is the unique vector field on 𝑊 with 𝑑𝑡(𝜕𝑡) = 1 that is annihilated by projection
onto Σ.

Using the implicit function theorem, one can show that there is vast flexibility in finding a
local spacetime gauges in a neighborhood of any point.

Lemma 2.8. Let 𝑞 ∈ 𝑀 and suppose 𝑇 ∈ 𝑇𝑞𝑀 and 𝜂 ∈ 𝑇∗𝑞𝑀 satisfy 𝜂(𝑇) = 1. Then there
exists a local spacetime decomposition defined on a neighborhood of 𝑞 such that at 𝑞, 𝜕𝑡 = 𝑇
and 𝑑𝑡 = 𝜂.

Lemma 2.8 can be used in tandem with Proposition 2.7 to compute the action of an in-
terval Γ by splitting Γ into finitely many pieces, each contained in a local spacetime de-
compositions such that Γ is transverse to the time function on it. The action of Γ can then
be computed by summing actions of the pieces with respect to classical Lagrangians as in
Proposition 2.7. Alternatively, given an interval Γ, one can find a thin tubular neighbor-
hood of Γ that is the domain of a local spacetime decomposition on it where Γ is transverse
to the time coordinate. A single application of Proposition 2.7 then allows the action of Γ
to be computed in terms of a single classical Lagrangian.

2.7 Momentum

Consider a classical time-dependent Lagrangian

𝐿 ∶ 𝑀𝑑 = 𝑇Σ𝑑−1 × 𝐼 → ℝ.

Choose local coordinates 𝑞𝑎 for Σwith induced coordinates 𝑣𝑎 on each 𝑇𝑞Σ, so (𝑞𝑎, 𝑣𝑎) are
local coordinates for 𝑇Σ. A familiar computation shows that a curve (𝑥(𝑡), 𝑡) is stationary
for the action determined by 𝐿 if

𝑑
𝑑𝑡 [

𝜕𝐿
𝜕𝑣𝑎 ] =

𝜕𝐿
𝜕𝑞𝑎 ; (2.13)
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these are the Euler-Lagrange equations and the quantity 𝜕𝐿/𝜕𝑣𝑎 appearing in it is known as
themomentum conjugate to 𝑞𝑎. The key insight of the Hamiltonian approach tomechanics
is to treat momentum as a dynamical variable on an equal footing with position, and that
doing so leads to structural simplifications of the equations of motion.

The momenta appearing in equation (2.13) are gauge dependent quantities. First, coordi-
nates have been imposed onΣ so that the derivatives 𝜕𝐿/𝜕𝑣𝑎 are well-defined. This is not an
essential drawback and there is a standard geometric description of these momenta. More
seriously, the classical Lagrangian itself is rooted in a particular spacetime decomposition
of𝑀. Our first task therefore is to describe a notion of momentum associated with a fun-
damental Lagrangian that is independent of any gauge but which, when a particular gauge
is imposed, reduces to the classical notion.

Let ℒ be a fundamental Lagrangian and let 𝑈 ⊂ 𝑇𝑀 be the set of tangent vectors 𝑣 such
that span 𝑣 is in the domain of ℒ. Recall the action density of ℒ from equation (2.5)

𝕤ℒ(𝑣) = 𝑣 ⨼ ℒ[span 𝑣].

If ℒ is described in terms of a pragmatic Lagrangian 𝕃 then 𝕤ℒ can be computed from 𝕃
directly via equation (2.9), namely 𝕤ℒ(𝑣) = 𝑣 ⨼ 𝕃(𝑣).

Now fix some 𝑞 ∈ 𝑀 and consider the restriction 𝕤ℒ,𝑞 of 𝕤ℒ to the tangent space 𝑇𝑞𝑀.
The derivative of 𝕤ℒ,𝑞 at some 𝑣 ∈ 𝑇𝑞𝑀 is a linear map 𝑇𝑣𝑇𝑞𝑀 → ℝ. But we can identify
𝑇𝑣𝑇𝑞𝑀 with 𝑇𝑞𝑀 itself and hence it is a linear map from 𝑇𝑞𝑀 toℝ, i.e. an element of 𝑇∗𝑀.
The momentum determined by 𝑣 is the derivative of 𝕤ℒ,𝑞 at 𝑣:

ℙℒ(𝑣) = D𝕤ℒ,𝑞 |𝑣 ∈ 𝑇∗𝑞𝑀.

Computationally,
𝑤 ⨼ ℙℒ(𝑣) =

𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝑤).

In some contexts, analogs of the map ℙℒ that convert velocity to momentum are called
Legendre transformations (e.g. [Si01] Chapter 20). But usually a Legendre transformation
denotes a subtly different operation related to the inverse of thismap. We (unimaginatively)
call it the velocity-to-momentum map.

Before examining properties ofℙℒ, we start with two examples to illustrate the general case.
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2.7.1 Momentum of a Relativistic Free Particle

The action for a free particle in a Lorentzian manifold (𝑀𝑑, 𝑔) is, up to a factor of −𝑚, the
proper time Lagrangian of Section 2.5.2. We describe it in terms of a pragmatic Lagrangian

𝕃(𝑣) = 𝑚
√−𝑔(𝑣, 𝑣)

𝑔(𝑣, ⋅) (2.14)

with induced fundamental Lagrangian ℒ = ℒ𝕃.

In order to compute ℙℒ we first compute the associated action density

𝕤ℒ(𝑣) = −𝑚√−𝑔(𝑣, 𝑣).

If 𝑤 ∈ 𝑇𝑞𝑀 then
𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝑤) = 𝑚
√−𝑔(𝑣, 𝑣)

𝑔(𝑣, 𝑤)

and consequently
ℙℒ(𝑣) =

𝑚
√−𝑔(𝑣, 𝑣)

𝑔(𝑣, ⋅). (2.15)

The fact that the right-hand sides of equations (2.14) and (2.15) are the same is striking, but
keep inmind thatℙℒ is uniquely determined fromℒwhereas𝕃 ismerely one of a vast family
of pragmatic Lagrangians that induce ℒ. Nevertheless, the connection is not an accident
and we return to this point shortly.

In order to connectℙℒ with familiar relativistic notions ofmomentum, let 𝜕𝑡 be a unit time-
like vector in some 𝑇𝑞𝑀; we think of 𝜕𝑡 as an observer at 𝑞. The timelike spacetime velocity
𝑣 can be decomposed as 𝑣 = 𝛽(𝜕𝑡+𝑤) for some 𝛽 ≠ 0 and some vector𝑤 orthogonal to 𝜕𝑡
satisfying |𝑤|𝑔 < 1. The spacelike vector 𝑤 is the velocity of the particle witnessed by the
observer 𝜕𝑡. On the other hand it turns out that the scale factor 𝛽 is effectively unimportant
and impacts ℙℒ(𝑣) only via its sign; we assume for simplicity that 𝛽 > 0 noting the other
case follows from the easy consequence of equation (2.15) that ℙℒ(−𝑣) = −𝑣.

Applying the covector ℙ(𝑣) to −𝜕𝑡 we find

−𝜕𝑡 ⨼ ℙℒ(𝑣) =
𝑚

√1 − |𝑤|2𝑔
,
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which is the relativistic energy of a particle with velocity 𝑤 measured by the observer. On
the other hand, if 𝑢 is a vector orthogonal to 𝜕𝑡 then

𝑢 ⨼ ℙℒ(𝑣) =
𝑚

√1 − |𝑤|2𝑔
𝑔(𝑤, 𝑢).

Hence the restriction ofℙℒ(𝑣) to the subspace orthogonal to 𝜕𝑡 recovers the usual relativistic
momentum seen by 𝜕𝑡.

Returning to similarities between equations (2.14) and (2.15) wemake the following related
observations:

1. If 𝛼 ∈ ℝ and 𝛼 ≠ 0 then
ℙℒ(𝛼𝑣) =

𝛼
|𝛼|ℙℒ(𝑣)

for any timelike vector 𝑣. Up to a sign, the momentum determined by a vector de-
pends only on the line spanned by 𝑣.

2. In fact, the previous observation shows thatℙℒ is a pragmatic Lagrangian. More than
that, the Lagrangian it determines is exactly ℒ since

𝑣 ⨼ ℙℒ(𝑣) = −𝑚√−𝑔(𝑣, 𝑣) = 𝑣 ⨼ 𝕃(𝑣).

Of the many pragmatic Lagrangians that induce ℒ, we find that ℙℒ is a natural rep-
resentative in the sense that it can be computed fromℒ without making any choices.

3. The collection ℙℒ(𝑇𝑀) of all possible momenta consists of the covectors 𝑝 in 𝑇∗𝑀
with 𝑔(𝑝, 𝑝) = −𝑚2. In particular, it is a hypersurface of 𝑇∗𝑀. The momentum of a
particle cannot be freely prescribed, but must instead satisfy a constraint.

We show in Section ?? that the first two of these observations are universal. They stem from
the fact that the action of an interval Γ in 𝑀 depends on its geometry but is unrelated to
any particular parameterization. Although the last observation does not always hold, it is
closely related to the first, which implies that ℙ cannot be full rank.
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2.7.2 Momenta Associated with Classical Lagrangians

Consider a classical Lagrangian on𝑀𝑑 = Σ𝑑−1 × 𝐼,

𝐿 ∶ 𝑇Σ × 𝐼 → ℝ.

As usual, let 𝑡 be the coordinate on 𝐼, let 𝜕𝑡 be the vector satisfying 𝜕𝑡𝑡 = 1 that is annihilated
by projection onto Σ. Working locally near some 𝑞 ∈ 𝑀 let 𝑞1,… , 𝑞𝑑−1 be coordinates on
Σ with associated vector fields 𝜕𝑘 and let 𝑤1,… ,𝑤𝑑−1 be the induced coordinates on the
fibers of 𝑇𝑀.

Suppose 𝑣 = 𝛽(𝜕𝑡 + 𝑤) ∈ 𝑇𝑞𝑀 where 𝛽 ≠ 0 and where 𝑑𝑡(𝑤) = 0. Note that 𝑤 is
the velocity in Σ determined by 𝑣 when using 𝑡 and 𝜕𝑡 to measure time. Following the
construction of Section 2.5.3 we define the pragmatic Lagrangian

𝕃(𝑣) = 𝛽
|𝛽|𝐿(𝑤, 𝑡)𝑑𝑡

with its associated action density

𝕤ℒ(𝑣) = 𝑣 ⨼ 𝕃(𝑣) = |𝛽|𝐿(𝑤, 𝑡).

We now compute ℙℒ(𝑣) assuming 𝛽 > 0; the case 𝛽 < 0 follows from an analogous com-
putation that shows ℙℒ(−𝑣) = −ℙℒ(𝑣). For the spatial directions we find

𝜕𝑘 ⨼ ℙℒ(𝑣) =
𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝜕𝑘) =
𝑑
𝑑𝜖
|||𝜖=0

𝛽𝐿(𝑤 + (𝜖/𝛽)𝜕𝑘, 𝑡) =
𝜕

𝜕𝑤𝑘
𝐿(𝑤, 𝑡). (2.16)

Hence 𝜕𝑘⨼ℙℒ(𝑣) is the classical momentum conjugate to 𝑞𝑘, and we denote it below by 𝑝𝑘.

It remains to compute 𝜕𝑡 ⨼ ℙℒ(𝑣) and we start by noting that if 𝑣 = 𝛽(𝜕𝑡 + 𝑤) then

𝑣 + 𝜖𝜕𝑡 = (𝛽 + 𝜖) (𝜕𝑡 +
1

1 + 𝜖/𝛽𝑤) .

Hence

−𝜕𝑡 ⨼ ℙℒ(𝑣) = − 𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝜕𝑡)

= − 𝑑
𝑑𝜖
|||𝜖=0

(𝜅 + 𝜖) 𝐿((1 + 𝜖/𝜅)−1𝑤, 𝑡)

= ( 𝜕
𝜕𝑤𝑘𝐿(𝑤, 𝑡))𝑤

𝑘 − 𝐿(𝑤, 𝑡)
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Recalling the shorthand 𝑝𝑘 = 𝜕
𝜕𝑤𝑘𝐿(𝑤, 𝑡) for the ‘spatial’ momenta computed above we

find
− 𝜕𝑡 ⨼ ℙℒ(𝑣) = 𝑝𝑘𝑤𝑘 − 𝐿(𝑤, 𝑡). (2.17)

The quantity appearing on the right-hand side of equation (2.17) is exactly the classical
Hamiltonian associated with the classical Lagrangian and we denote it by 𝐻. It is related1

to the Legendre transformation of 𝐿, an important operation that is nevertheless difficult
to motivate, as is the definition of the Hamiltonian which appears deus ex machina in many
treatments. By contrast, the Hamiltonian emerges here as a consequence of an easy princi-
ple: it is −𝜕𝑡 ⨼ ℙℒ for the fundamental Lagrangian associated with a classical Lagrangian.

At the end of section 2.7.1 we listed three properties of the relativistic free-particle momen-
tum associated with parameterization invariance. We revisit these properties in the current
context.

1. If 𝑣(𝑑𝑡) > 0 (and hence 𝜅 > 0 in the notation above), the expressions for 𝑝𝑘 =
𝜕𝑘 ⨼ ℙℒ(𝑣) and 𝐻 = −𝜕𝑡 ⨼ ℙℒ)𝑣) computed in equations (2.16) and (2.17) depend
on 𝑣 only via the spatial velocity 𝑤. Since 𝑤 remains fixed if 𝑣 is replaced by 𝛼𝑣 for
𝛼 > 0, we find thatℙ(𝛼𝑣) = ℙ(𝑣) if 𝛼 > 0. Combining this with our earlier assertion
that ℙ(−𝑣) = −ℙ(𝑣) we have

ℙ(𝛼𝑣) = 𝛼
|𝛼|𝑃(𝑣)

for all 𝛼 ≠ 0. Hence ℙ is a pragmatic Lagrangian.

2. To compute the fundamental Lagrangian it determines it is enough to consider the
case 𝛽 = 𝑣(𝑑𝑡) > 0, in which case we find

𝑣 ⨼ ℙ(𝑣) = 𝛽 (𝜕𝑡 ⨼ ℙ(𝑣) + 𝑤 ⨼ ℙ(𝑣))
= 𝛽 (−𝐻 + 𝑤𝑘𝑝𝑘)
= 𝛽 (𝐿(𝑤, 𝑡) − 𝑝𝑘𝑤𝑘 + 𝑤𝑘𝑝𝑘)
= 𝛽 𝐿(𝑤, 𝑡)
= 𝑣 ⨼ 𝕃(𝑣).

That is, ℙℒ induces the fundamental Lagrangian it was derived from.
1Strictly speaking, the Hamiltonian is the Legendre transformation of 𝐿 once the variables𝑤𝑘 have been

rewritten in terms of the variables 𝑝𝑘, assuming this inverse procedure is possible. Nevertheless, the quantity
on the right-hand side of equation (2.17) is well defined regardless of whether such an inversion is possible.
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3. Without knowingmore about𝐿we cannot recover the fact observed for free relativis-
tic particles that ℙℒ(𝑇𝑀) is a hypersurface of 𝑇∗𝑀. Nevertheless, because the of the
scaling property ℙ(𝑐𝑣) = ℙ(𝑣) the derivative of ℙ cannot be full rank, and ℙℒ(𝑇𝑀)
is a Lebesgue null set.

2.8 Consequences of Parameterization Invariance

In Section 2.3 we showed that the action density 𝕤ℒ of a fundamental Lagrangianℒ satisfies

𝕤ℒ(𝛼𝑣) = |𝛼| 𝕤ℒ(𝛼𝑣)

and remarked that it is the source of the parameterization invariance of the action 𝑆ℒ. This
same scaling property is the root of the following result.

Proposition 2.9. Let ℒ be a fundamental Lagrangian on a manifold 𝑀𝑑. Its associated
velocity-to-momentum map ℙℒ is a pragmatic Lagrangian that induces ℒ. That is, for all
𝑣 ∈ 𝑇𝑀 such that span 𝑣 is in the domain of ℒ,

𝑣 ⨼ ℙ(𝑣) = 𝑣 ⨼ ℒ[span 𝑣]. (2.18)

Proof. If 𝛼 > 0 and if 𝑣 and 𝛿𝑣 are vectors in 𝑇𝑀 with span 𝑣 in the domain of ℒ then

ℙℒ(𝛼𝑣)(𝛿𝑣) =
𝑑
𝑑𝜖|𝜖=0𝕤(𝛼𝑣 + 𝜖𝛿𝑣)

= |𝛼| 𝑑𝑑𝜖|𝜖=0𝕤(𝑣 + (𝜖/𝛼)𝛿𝑣)

= |𝛼| (𝛿𝑣/𝛼) ⨼ ℙℒ(𝑣)
= 𝛼
|𝛼| 𝛿𝑣 ⨼ ℙℒ(𝑣).

Hence ℙℒ is a pragmatic Lagrangian. Moreover,

𝑣 ⨼ ℙℒ(𝑣) =
𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝑣) = 𝑑
𝑑𝜖
|||𝜖=0

(1 + 𝜖)𝕤ℒ(𝑣) = 𝕤ℒ(𝑣) = 𝑣 ⨼ ℒ[span 𝑣].

Hence ℙℒ induces ℒ.
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Equation (2.18) can alternatively be written

𝑣 ⨼ ℙℒ(𝑣) − 𝑣 ⨼ ℒ[span 𝑣] = 0 (2.19)

and the left-hand side can be interpreted as a version of the classical Hamiltonian appearing
on the right-hand side of equation (2.17). Equation (2.19) is the source of statements to the
effect of “the Hamiltonian of a parameterization invariant Lagrangian vanishes identically”.
We prefer equation (2.18), however, which will be the key to transitioning to Hamiltonian
mechanics.

The feasible momenta associated withℒ is the image𝒫ℒ = ℙℒ(𝑈) ⊂ 𝑇∗𝑀, where𝑈 is the
set of tangent vectors 𝑣 with span 𝑣 in the domain ofℒ. It is the set of all possible momenta
associated with any admissible direction of travel in𝑀, and Proposition 2.9 implies that it
is a thin subset of 𝑇∗𝑀. Indeed, since ℙℒ is a pragmatic Lagrangian, ℙℒ(𝛼𝑣) = ℙℒ(𝑣) for
any 𝛼 > 0 and hence the derivative ofℙℒ has less than full rank everywhere. Consequently,
𝒫ℒ is a Lebesgue null set in 𝑇∗𝑀. The maximum possible rank for ℙℒ is 2𝑑 − 1, where
𝑑 is the dimension of 𝑀; this is the generic case. If 𝒫ℒ has constant rank 2𝑑 − 1 then
𝒫ℒ is an immersed hypersurface of 𝑇∗𝑀, and for local questions we can assume 𝒫ℒ is an
embedded hypersurface. Although the case where𝒫ℒ has rank less than 2𝑑−1 is important
(such as when additional “non-dynamical” variables akin to the parameterization variable
are present), we will frequently assume for now that 𝒫ℒ is an embedded submanifold.

2.9 Action from the Hamiltonian Perspective

Let ℒ be a Lagrangian on 𝑀𝑑 and let 𝜋 ∶ 𝑇∗𝑀 → 𝑀 be the projection. Suppose Γ is an
ℒ-admissible interval in 𝑀. If 𝛾 is a parameterization of Γ then ̇𝛾 is a curve in 𝑇𝑀 and
equation (2.18) implies

𝑆ℒ[Γ] = ∫
𝜆1

𝜆0
̇𝛾 ⨼ ℒ[span ̇𝛾] 𝑑𝜆 = ∫

𝜆1

𝜆0
̇𝛾 ⨼ ℙℒ( ̇𝛾) 𝑑𝜆. (2.20)

This last integrand can be reinterpreted in terms of a natural 1-formon𝑇∗𝑀 known (among
other names) as the tautological 1-form, which we we recall now.

Suppose 𝑉 ∈ 𝑇𝑝𝑇∗𝑀 for some 𝑝 ∈ 𝑇∗𝑀. Projecting 𝑇∗𝑀 onto 𝑀 it determines 𝑣 =
𝜋∗𝑉 ∈ 𝑇𝑀. Since 𝑝 and 𝑣 are both based at the same 𝑞 ∈ 𝑀, we can then form 𝑣 ⨼ 𝑝.
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Using these operations we define Θ𝑝 ∈ 𝑇∗𝑝 𝑇∗𝑀 by

Θ𝑝(𝑉) = (𝜋∗𝑉) ⨼ 𝑝.

This is the tautological 1-form at 𝑝. If 𝑞𝑘 are local coordinates on𝑀 with induced coordi-
nates 𝑝𝑘 on the fibers of 𝑇∗𝑀, one readily shows Θ = 𝑝𝑘𝑑𝑞𝑘.

Returning to equation (2.20) we find

𝑆ℒ[Γ] = ∫
ℙℒ∘𝛾̇

Θ. (2.21)

At first glance, this is a promising equation. We are interested in computing stationary
intervals Γ, and we can computed action in terms of integrating a universal one-form over
curves in 𝑇∗𝑀. Hence one can bring standard tools such as the exterior derivative to bear
on examining variations of the action. Motivated by equation (2.21) we define the action
of an arbitrary curve ̃𝛾 in 𝑇∗𝑀 to be

𝑆[ ̃𝛾] = ∫
𝛾̃
Θ,

a quantity that depends that depends on the curve but is unrelated to any Lagrangian. Now
suppose ̃𝛾𝑠(𝜆) is a variation of curves in 𝑇∗𝑀 for 𝜆 in some interval 𝐼 = [𝜆0, 𝜆1] and 𝑠 ∈
(−𝜖, 𝜖) for some 𝜖 > 0. Letting 𝑋 = 𝑑

𝑑𝑠
|𝑠=0𝛾𝑠 we have

check
sign!𝑑

𝑑𝑠
|||𝑠=0

𝑆[ ̃𝛾𝑠] = Θ(𝑋(𝜆1)) − Θ(𝑋(𝜆0)) +∫
𝛾̃0
𝑋 ⨼ 𝑑Θ

In particular, for variations that fix the endpoints,

𝑑
𝑑𝑠
|||𝑠=0

𝑆[ ̃𝛾𝑠] = −∫
𝛾̃0
𝑋 ⨼ Ω (2.22)

whereΩ = −𝑑Θ is known as the symplectic 2-form.

Without any constraints, there are no curves in 𝑇∗𝑀 for which action is stationary. Indeed,
equation (2.22) implies that such a curve would have to satisfy Ω( ̇̃𝛾, ⋅) = 0 at each point
along the curve. Otherwise, if there exists a vector 𝑋 such that Ω( ̇𝜃, 𝑋) ≠ 0 at some point
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we could exploit it to construct a variation of curves about ̃𝛾 for which the action is not
stationary. However, using the coordinate representation

Ω = 𝑑𝑞𝑘 ∧ 𝑑𝑝𝑘

it is easy to see that for any non-zero vector 𝑇, there exists a vector 𝑋 withΩ(𝑇, 𝑋) ≠ 0.

Whenworking with a specific Lagrangian, however, we do not vary over arbitrary curves in
𝑇∗𝑀. Rather, a curve 𝛾 in𝑀 lifts to a curve ℙℒ ∘ ̇𝛾 in the set𝒫ℒ of feasible momenta, which
we assume for now is an embedded hypersurface in 𝑇∗𝑀. This suggests the following task:

Problem 2.10. Find curves ̃𝛾 in𝒫ℒ such that the action 𝑆[ ̃𝛾] is stationary among curves with
the same endpoints in 𝒫ℒ.

With a little thought, however, this seems like an line of attack with almost no chance of
success. First, the category of curves we are examining has been massively increased. If we
find a curve ̃𝛾 in 𝒫ℒ for which the action is stationary, there is no reason to expect that ̃𝛾
is the lift ℙℒ ∘ ̇𝛾 of some curve in 𝑀. At the same time, although the action of a curve in
𝑀 can be computed using Θ via equation (2.20), variations among curves in 𝒫 is broader
than variations among curves that are lifts of curves in 𝑀. There is no reason to expect
that stationarity within the smaller class implies stationarity with respect to full variations.
In summary, we are potentially admitting solutions we do not want, and simultaneously
potentially ruling out solutions we would like to keep.

In fact, stationary action in the Hamiltonian sense of Problem 2.10 is, in the generic case,
equivalent to stationary action in the Lagrangian sense and relies on a structural feature
of 𝒫ℒ. To illustrate it, consider a relativistic particle with mass𝑚 on a Lorenzian manifold
(𝑀, 𝑔) as in Section 2.7.1. Equation (2.15) implies that in this caseℙℒ(𝑣) = 𝑚/√−𝑔(𝑣, 𝑣) 𝑣♭
and therefore 𝒫ℒ consists of the covectors 𝑝 with 𝑔(𝑝, 𝑝) = −𝑚2. A familiar computation
shows that the tangent space 𝑇𝑝𝒫ℒ consists of the covectors orthogonal to 𝑝. Moreover, if
𝛿𝑝 is one of these orthogonal covectors, then

𝛿𝑝(𝑣) = 𝑔(𝛿𝑝, 𝑣♭) = √−𝑔(𝑣, 𝑣, )
𝑚 𝑔(𝛿𝑝, 𝑝) = 0.

That is, 𝑇ℙℒ(𝑣)𝒫ℒ consists of 𝑣⟂, the set of covectors that annihilate 𝑣. This potentially co-
incidental feature of 𝒫ℒ is a consequence of the following result and is again related to
parameterization invariance via Proposition 2.9.
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Figure 1: Feasible Momenta for a Free Particle

Proposition 2.11. Let ℒ be a fundamental Lagrangian on𝑀𝑑 with velocity-to-momentum
map ℙℒ. Fix some 𝑞 ∈ 𝑀 and some 𝑣 ∈ 𝑇𝑞𝑀 with span 𝑣 in the domain ofℒ. The derivative
Dℙℒ satisfies

(Dℙℒ)(𝑇𝑣𝑇𝑞𝑀) ⊂ 𝑣⟂.

Proof. Suppose 𝑤 ∈ 𝑇𝑣𝑇𝑞𝑀 = 𝑇𝑞𝑀. From the definition of ℙℒ(𝑣),

𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝑤) = 𝑤 ⨼ ℙℒ(𝑣). (2.23)

On the other hand, Proposition 2.9 implies

𝕤ℒ(𝑣 + 𝜖𝑤) = (𝑣 + 𝜖𝑤) ⨼ ℙℒ(𝑣 + 𝜖𝑤)

and hence
𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝑣 + 𝜖𝑤) = 𝑤 ⨼ ℙℒ(𝑣) + 𝑣 ⨼ (𝐷ℙ𝑞)𝑣(𝑤) (2.24)

Comparing equations (2.23) and (2.24) we conclude 𝑣 ⨼ (𝐷ℙℒ)𝑣(𝑤) = 0 as claimed.
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The statement of Proposition 2.11 is a little fussy, mainly because we have assumed essen-
tially nothing about ℙℒ. If we assume that ℙℒ has the largest rank possible subject to the
restriction from Proposition 2.9, we obtain a more straightforward result. In particular, we
say ℒ on 𝑀𝑑 satisfies the maximum rank condition if ℙℒ has rank 2𝑑 − 1 at every point
and if 𝒫ℒ is an embedded submanifold of 𝑇∗𝑀. Of course, if ℙℒ is constant rank, its image
is an immersed submanifold and in local arguments we can assume 𝒫ℒ is embedded by
restricting our attention2 to a small enough neighborhood in 𝑇𝑀. The following is an easy
consequence Proposition 2.11 and a dimension count argument when the maximum rank
condition holds.

Corollary 2.12. Supposeℒ satisfies themaximum rank condition. Let𝑝 ∈ 𝒫ℒ, so 𝑝 = ℙℒ(𝑣)
for some 𝑣 ∈ 𝑇𝑀. Then

𝑇𝑝𝒫ℒ = 𝑣⟂

Corollary 2.12 shows that ℙℒ is effectively invertible in the maximum rank setting. Indeed,
if 𝑣, 𝑤 ∈ 𝑇𝑞𝑀 for some 𝑞, and if 𝑣⟂ = 𝑤⟂, then 𝑣 and 𝑤 are colinear. But we already
knew that ℙℒ(𝜆𝑣) = ±ℙℒ(𝑣) depending on the sign of 𝜆. The sign ambiguity is essential,
since 𝒫ℒ = 𝒫−ℒ and since momentum changes sign when ℒ does. But the sign ambiguity
is usually easy to manage and indeed can be eliminated in settings where there is a time
orientation; see Section ??.

The following two results validate the Hamiltonian agenda of examining stationary action
by working in phase space, so long as ℒ satisfies the maximum rank condition.

Proposition 2.13. Suppose ℒ satisfies the maximum rank condition. If Γ is a stationary
interval in𝑀 and if 𝛾 is a parameterization of Γ then the lift ̃𝛾 = ℙℒ ∘ ̇𝛾 is stationary in 𝒫ℒ.

Proof. Sketch. Consider an arbitrary variation of ̃𝛾𝑠 of ̃𝛾 = ℙℒ ∘ ̇𝛾 in 𝒫ℒ. In local coordi-
Sloppy
here
about ̇𝛾
needing
to not
vanish
down-
stairs.

nates,
Θ( ̇̃𝛾𝑠) = 𝑝𝑘(𝜆, 𝑠) ̇𝑞𝑘(𝜆, 𝑠).

For fixed 𝜆, 𝑝𝑘(𝜆, 𝑠) 𝑑𝑞𝑘 is a curve in 𝒫 and hence

𝑑
𝑑𝑠
|||𝑠=0

𝑝𝑘(𝜆, 𝑠)𝑑𝑞𝑘 ∈ 𝑇ℙℒ∘𝛾̇(𝜆)𝒫.

2Wouldn’t it be nice to show that the embedded hypothesis is superfluous? This is less unreasonable than
it sounds. Regardless, not critical for local work.
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Since ̇𝑞𝑘𝜕𝑘 is the coordinate representation of ̇𝛾, Corollary 2.12 then implies

[ 𝑑𝑑𝑠
|||𝑠=0

𝑝𝑘(𝜆, 𝑠)] ̇𝑞𝑘(𝜆, 𝑠) = 0

and we conclude

𝑑
𝑑𝑠
|||𝑠=0

[𝑝𝑘(𝜆, 𝑠) ̇𝑞𝑘(𝜆, 𝑠)] = 𝑝𝑘(𝜆, 0)
𝑑
𝑑𝑠
|||𝑠=0

̇𝑞𝑘(𝜆, 𝑠).

As a consequence,
𝑑
𝑑𝑠
|||𝑠=0

𝑆[ ̃𝛾𝑠] = ∫
𝜆1

𝜆0
𝑋 ⨼ ̃𝛾(𝜆) 𝑑𝜆 (2.25)

where 𝑋(𝜆) = 𝑑/𝑑𝑠|𝑠=0𝜋 ∘ ̃𝛾𝑠 is an “infintesimal” variation of 𝛾.

Now consider the variation 𝛾𝑠 ∶= 𝜋 ∘ ̃𝛾𝑠 of 𝛾. By stationarity of 𝛾,

𝑑
𝑑𝑠
|||𝑠=0

𝑆[ℙℒ ∘ ̇𝛾𝑠] = 0.

But ℙℒ ∘ ̇𝛾𝑠 is another variation of ̃𝛾, so equation (2.25) applies equally to it with the pos-
sibility that the vector field 𝑋 may be different. But 𝜋 ∘ ℙℒ ∘ ̇𝛾𝑠 = 𝛾𝑠 = 𝜋 ∘ ̃𝛾𝑠, so 𝑋 is
unchanged as well. We conclude that the integral on the right-hand side of equation (2.25)
vanishes and consequently ̃𝛾 is stationary in 𝒫ℒ.

Fix the
sign am-
biguity
problem
here!

Proposition 2.14. Suppose ℒ satisfies the maximum rank condition. If ̃𝛾 is stationary in 𝒫ℒ
then it is the lift of a curve in𝑀.

Proof. Sketch. Suppose ̃𝛾 is not the lift of a curve in 𝑀 and let 𝛾 = 𝜋 ∘ ̃𝛾. Then there is
parameter 𝜆 such that ̃𝛾(𝜆) ≠ ℙℒ( ̇𝛾(𝜆)). Let 𝑝 = ̃𝛾(𝜆∗) and 𝑣 = ̇𝛾(𝜆∗). Now 𝑝 = ℙℒ(𝑤) for
some 𝑤 ∈ 𝑇𝑀, and 𝑤 is not colinear with 𝑣, for otherwise ℙℒ(𝑤) = ±ℙℒ(𝑣). Hence there
exists 𝛿𝑝 ∈ 𝑤⟂ such that 𝑣 ⨼ 𝛿𝑝 ≠ 0. Because 𝒫ℒ is a hypersurface, 𝛿𝑝 considered as an
element of 𝑇𝑇∗𝑀 belongs to 𝑇𝑝𝒫ℒ. Moreover

−Ω(𝛿𝑝, ̇̃𝛾) = ̇̃𝛾 ⨼ 𝛿𝑝 ≠ 0.

Hence ̃𝛾 is not stationary.
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2.10 Equations of Motion

At long last we develop the equations of motion for stationary action, assuming that the set
𝒫ℒ of feasible momenta is an embedded hypersurface. In the previous section we showed
that under this hypothesis, the stationary action problem reduces to finding curves 𝛾 in 𝒫ℒ
such that the generic action

𝑆[𝛾] = ∫
𝛾
Θ

is stationary among variations of curves constrained to 𝒫ℒ. We emphasize that 𝑆[⋅] de-
pends on the tautological one-form Θ but is unrelated to any Lagrangian; the role that the
Lagrangian plays is to dictate, via the map ℙℒ, the set 𝒫ℒ of feasible momenta. Having
done its job, we forget about ℒ at this point, and the remainder of this section concerns
embedded hypersurfaces of 𝑇∗𝑀.

Proposition 2.15. Let 𝒫 be an embedded hypersurface in 𝑇∗𝑀. A curve 𝛾 ∶ 𝐼 → 𝒫 defined
on a compact interval 𝐼 = [𝜆0, 𝜆1] is stationary in 𝒫 if and only if

𝑑Θ( ̇𝛾(𝜆), 𝑉) = 0 (2.26)

for all 𝜆 ∈ 𝐼 and all 𝑉 ∈ 𝑇𝛾(𝜆)𝒫.

Proof. Let 𝛾𝑠 be a variation of 𝛾. Then

𝑑
𝑑𝑠
|||𝑠=0

𝑆[𝛾𝑠] = Θ(𝑋(𝜆1)) − Θ(𝑋(𝜆0)) +∫
𝐼
𝑑Θ( ̇𝛾, 𝑋) 𝑑𝜆

where 𝑋 = 𝑑/𝑑𝑠|𝑠=0𝛾𝑠 is the usual infinitesimal variation along 𝛾. Because variations are
fixed at the endpoints, the boundary terms vanish. So if equation (2.26) holds, 𝛾 is sta-
tionary. Conversely, suppose at some point 𝑝 along the curve there exists a vector 𝑍 with
𝑑Θ( ̇𝛾, 𝑍) ≠ 0; without loss of generality we assume the value is positive. We can then con-
struct a variation of 𝛾 such that 𝑋 = 𝑍 at 𝑝, and such that 𝑋 = 0 away from an arbitrarily
small region near 𝑝 so that 𝑑Θ( ̇𝜸, 𝑋) ≥ 0 at all points. For such a variation,∫𝛾 𝑑Θ(⋅, 𝑋) > 0
and hence 𝛾 is not stationary.

Proposition 2.15 indicates the key role that the symplectic 2-form Ω = −𝑑Θ plays in de-
tecting stationary curves. As discussed in the following section, it is a more fundamental
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object on 𝑇∗𝑀 than Θ itself. Indeed, if we modify Θ by a closed one-form, although the
action of individual curves change, the symplectic 2-form does not change, nor does the
condition (2.26) needed for stationarity.

Following [Ar97] Sec ??, we now show that embedded hypersurfaces of 𝑇∗𝑀 are uniquely
foliated by curves with tangent lines ℓ such that for 𝑉 ∈ ℓ,Ω|𝒫(𝑉, ⋅) = 0.

Lemma 2.16. Let 𝐵 be a nondegenerate alternating bilinear form on an even-dimensional
vector space𝑉 , and let𝑊 be a hyperspace of𝑉 . Then the annihilator of𝐵|𝑊 is one-dimensional.

Proof. Let 𝑔 be an arbitrary metric on 𝑉 and let 𝐴 ∶ 𝑉 → 𝑉 be the linear map defined by
𝑔(𝑣, 𝐴𝑤) = 𝐵(𝑣, 𝑤). Since 𝐵 is non-degenerate, 𝐴 has trivial kernel and is hence invert-
ible. Observe that 𝑥 ∈ Ann𝐵|𝑊 if and only if 𝑥 ∈ 𝑊 and 𝐴𝑥 ∈ 𝑊 ⟂, where 𝑊 ⟂ is the
orthogonal complement of𝑊 with respect to 𝑔. That is, Ann𝐵|𝑊 = 𝐴−1(𝑊 ⟂) ∩𝑊 . Since
𝑊 is a hypersurface, 𝑊 ⟂ is one dimensional, as is 𝐴−1(𝑊 ⟂). So Ann𝐵|𝑊 is at most one
dimensional. Since𝑊 is has odd dimension, Ann𝐵|𝑊 is non-trivial, and hence is exactly

flesh this
last bit
out.

one dimensional.

Around here, talk about the fact that the distribution is integrable, foliations, easy case
of Frobenious, etc.

Following [Ar97], we call an embedded submanifold of 𝒫 with tangent space equal to the
annihilator ofΩ|𝒫 a vortex curve. A defining function for 𝒫 yields a parameterization for
vortex curves by selecting a preferred tangent vector at each point.

Lemma 2.17. Let 𝒫 be an embedded hypersurface of 𝑇∗𝑀, let 𝑝 ∈ 𝒫, and letℋ be a local
defining function for 𝒫 near 𝑝. Then 𝑋ℋ defined by

𝑋ℋ ⨼ Ω = 𝑑ℋ

spans AnnΩ|𝑇𝑝𝒫 at 𝑝.

Proof. First, observe that 𝑋ℋ is defined on an open neighborhood of 𝑝 in 𝑇∗𝑀, not just in
𝒫. Moreover,

𝑋ℋℋ = 𝑑ℋ(𝑋ℋ) = Ω(𝑋ℋ, 𝑋ℋ) = 0
and hence 𝑋ℋ is tangent to the level sets ofℋ. In particular, on 𝒫, 𝑋ℋ is tangent to 𝒫.
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Now suppose 𝑊 ∈ 𝑇𝑝𝒫. Then Ω(𝑋ℋ,𝑊) = −𝑑ℋ(𝑊) = 0 since ℋ is constant on 𝒫.
Thus 𝑋ℋ at 𝑝 is in the annihilator ofΩ restricted to 𝑇𝑝𝒫. Since 𝑑ℋ ≠ 0 at 𝑝, 𝑋ℋ ≠ 0 there
as well and hence Lemma 2.16 implies it spans AnnΩ|𝑇𝑝𝒫.

Big picture. Through every point 𝑝 ∈ 𝒫 there is a unique maximal vortex curve. A curve
in 𝒫 is stationary if and only if it parameterizes a piece of a vortex curve. Moreover, we
can generate such curves by selecting a defining functionℋ for𝒫, in which case the vortex
curves are exactly the integral curves of 𝑋ℋ . The choice of defining function is essentially
a choice of how the vortex curves are parameterized.

Theorem 2.18 (Hamilton’s Equations). Let 𝑞𝑘 be local coordinates on 𝑀 and let 𝑝𝑘 be the
induced coordinates on the fibers of 𝑇∗𝑀. Supposeℋ is a defining function for an embedded
hypersurface 𝒫. Then 𝑋ℋ = ̇𝑝𝑘𝜕𝑝𝑘 + ̇𝑞𝑘𝜕𝑞𝑘 is given by

̇𝑞𝑘 = 𝜕ℋ
𝜕𝑝𝑘

̇𝑝𝑘 = −𝜕ℋ𝜕𝑞𝑘
(2.27)

Proof. Short proof here.

We call a defining function ℋ for 𝒫 a Hamiltonian for it, but some caution is needed to
distinguish it from the Hamiltonian𝐻 = −𝜕𝑡⨼ℙℒ discussed in Section 2.7.2. The function
ℋ is defined on a neighborhood of 𝒫 in 𝑇∗𝑀 and assumes a constant value on 𝒫. By
contrast, as described in detail in Section ??, after a choice of time function 𝑡 and time flow
𝜕𝑡 have beenmade on𝑀,𝐻 is a non-trivial function on𝒫. Bothℋ and𝐻 inducemotion on
a symplectic manifold via the mechanism to be described in Section ??, but in the case of𝐻
the manifold has two fewer dimensions than 𝑇∗𝑀. Notably, both notions of Hamiltonian
are gauge dependent quantities, withℋ reflecting a choice of parameterization along vortex
lines, and 𝐻 arising only after a time gauge has been imposed. The gauge-independent
object from the Hamiltonian perspective is 𝒫ℒ, the hyperspace of feasible momenta.

Summary: a hyperspace 𝒫 ⊂ 𝑇∗𝑀 is equipped with a preferred foliation by vortex curves.
Tangent vectors 𝑇 to vortex curves are characterized by 𝑇 ⨼ Ω|𝒫 = 0. The curves 𝛾 into
𝒫 that parameterize the vortex curves are exactly the curves for which action is stationary
subject to the variations constrained to𝒫. A defining functionℋ for𝒫 determines a vector
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field 𝑋ℋ along 𝒫 tangent to the vortex curves and integrating 𝑋ℋ yields (parameterized)
stationary curves. Different choices of defining functions determine different parameteri-
zations of the vortex curves.

2.11 Hamilton’s Equations, Concretely

The Hamiltonian approach described up to this point for finding stationary action curves
is tortuous. First, starting with a fundamental Lagrangian ℒ, compute the velocity-to-
momentum transformation ℙℒ. With luck the full rank condition holds, in which case
the image 𝒫ℒ of this map is a hypersurface of 𝑇∗. Now find, somehow, a defining function
ℋ for the hypersurface. If all this can be done, then Theorem 2.18 can be applied to find
stationary curves in 𝒫ℒ, which project down to stationary curves for the original action.

In this section we carry out this program with two different methods. In the first example,
a defining function for𝒫ℒ is immediately apparent. This kind of serendipity can’t always be
expected, and the second example shows how to use an essentially arbitrary choice of time
function on𝑀 to generate a local defining functionℋ.

2.11.1 Relativistic Free Particle

We revisit a particle of mass𝑚 on a Lorenzian manifold (𝑀𝑑, 𝑔) and recall that in Section
2.7.1 we computed the velocity-to-momentum map

ℙℒ(𝑣) =
𝑚

√−𝑔(𝑣, 𝑣, )
𝑔(𝑣, ⋅)

for time-like vectors 𝑣. But now it is apparent that

𝒫ℒ = {𝑝 ∈ 𝑇∗𝑀 ∶ 𝑔(𝑝, 𝑝) = −𝑚2}.

Henceℋ(𝑝) = 1
2
𝑔(𝑝, 𝑝) is a defining function for 𝒫ℒ. In fact, it is a defining function for

the level sets associated with every mass𝑚. Hamilton’s equations (2.27) become

̇𝑞𝑎 = 𝑔𝑎𝑏𝑝𝑏

̇𝑝𝑎 = −12
𝜕𝑔𝑐𝑑
𝜕𝑞𝑎 𝑝𝑐𝑝𝑑

32



which are the geodesic equations. For these curves,

𝑑
𝑑𝜆| ̇𝑞|

2
𝑔 =

𝑑
𝑑𝜆𝑔𝑎𝑏 ̇𝑞𝑎 ̇𝑞𝑏

= 𝑑
𝑑𝜆𝑔

𝑎𝑏𝑝𝑎𝑝𝑏

= 𝜕𝑔𝑎𝑏
𝜕𝑞𝑐 ̇𝑞𝑐𝑝𝑎𝑝𝑏 + 2𝑔𝑎𝑏𝑝𝑎 ̇𝑝𝑏

= 𝜕𝑔𝑎𝑏
𝜕𝑞𝑐 𝑔

𝑐𝑑𝑝𝑑𝑝𝑎𝑝𝑏 − 𝑔𝑎𝑏𝑝𝑎
𝜕𝑔𝑐𝑑
𝜕𝑞𝑏 𝑝𝑐𝑝𝑑

= 0.

That is, this choice ofℋ dictates a constant “speed” parameterization along the curves, and
more than that links the speed to the particle mass:

𝑔( ̇𝑞, ̇𝑞) = 𝑔(𝑝, 𝑝) = −𝑚2.

Somewhere I should show how to get back to a classical action on 𝑀 with classical La-
grangian 𝐿( ̇𝑞) = 1

2
𝑔( ̇𝑞, ̇𝑞) from here. The point is that once you’ve committed yourself

to ℋ, then you’ve married yourself to how the curves are parameterized and nothing is
lost in re-extracting a classical Lagrangian compatible with the agreed upon choice of time
parameterization.

2.11.2 Selection of a Time Gauge

In the previous example, we were lucky: we spotted a defining function for𝒫ℒ, and a fortu-
itous one at that. We now exhibit a technique for constructing a local defining function on
𝒫ℒ based on the choice of an essentially arbitrary spacetime gauge (𝑡, 𝜕𝑡) on 𝑀. The local
defining functionℋ generated by this method parameterizes vortex curves by 𝑡.

Let ℒ be a fundamental Lagrangian on 𝒫ℒ with velocity-to-momentum map ℙℒ. Consider
some 𝑣0 ∈ 𝑇𝑀 based at some point 𝑞0 and let 𝑝0 = ℙℒ(𝑣0). We assume that ℒ satisfies
the maximum rank condition, so 𝒫ℒ is an embedded hypersurface, and we work locally to
construct vortex curves in 𝒫ℒ near 𝑝0.

Pick a function 𝑡 on 𝑀 near 𝑞 such that 𝑑𝑡(𝑣0) > 0 at 𝑞0 and such that 𝑑𝑡 ≠ 0 on its
domain. At the same time, pick a vector field 𝜕𝑡 on 𝑀 near 𝑞 such that 𝑑𝑡(𝜕𝑡) = 1. With
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these choices made, we may as well assume that 𝑀𝑑 = Σ𝑑−1 × 𝐼 for some interval 𝐼, with
𝑡 being the coordinate along 𝐼 and 𝜕𝑡 pointing along 𝐼. Since 𝑝0 = ℙℒ(𝑣0) = ℙℒ(𝜆𝑣0) for
any 𝜆 > 0, we can assume without loss of generality that 𝑑𝑡(𝑣0) = 1.

The spacetime decomposition allows us to write each 𝑝 ∈ 𝑇∗𝑀 as a sum 𝑝Σ + 𝑠𝑑𝑡 where
𝑝Σ is the pullback of an element of 𝑇∗Σ and 𝑠 ∈ ℝ. Using the pullback, we simply identify
elements of𝑇∗Σ as elements of𝑇∗𝑀. Our aim is to write𝒫ℒ∩𝑇𝑞𝑀 at 𝑞 = (𝑞Σ, 𝑡) as a graph
over𝑇∗𝑞ΣΣ. That is, wewant to find a function𝐻(𝑞Σ, 𝑝Σ, 𝑡) such that each𝑝 ∈ 𝑇 (𝑞Σ,𝑡)𝑀∩𝒫ℒ
has the form

𝑝 = 𝑝Σ − 𝐻(𝑞Σ, 𝑝Σ, 𝑡)𝑑𝑡.
Assuming such a function 𝐻 can be found, since elements of 𝑇∗Σ annihilate 𝜕𝑡, it follows
that 𝑝 belongs to 𝒫ℒ ∩ 𝑇∗𝑞𝑀 if and only if

𝜕𝑡 ⨼ 𝑝 = −𝐻(𝑞Σ, 𝑝Σ(𝑝), 𝑡)

where 𝑝Σ(𝑝) is the projection of 𝑝 onto 𝑇𝑞ΣΣ determined by the spacetime decomposition.
Define

𝑠(𝑝) = 𝜕𝑡 ⨼ 𝑝 = 𝜕𝑡 ⨼ Θ𝑝 (2.28)

and let
ℋ = 𝑠 + 𝐻,

which is a function on 𝑇∗𝑀 defined near 𝑝0. Then 𝒫ℒ is the level set ℋ = 0. Moreover,
in terms of the coordinates (𝑝Σ, 𝑠) on each fiber 𝑇𝑞𝑀, 𝐻 is independent of 𝑠 and hence
𝑑ℋ = 𝑑𝑠 + 𝑑𝐻 ≠ 0. So ℋ is a local defining function for 𝒫ℒ. If 𝑞𝑘Σ are coordinates
on Σ inducing coordinates 𝑝Σ,𝑘 on the fibers of 𝑇∗Σ, then the coordinates (𝑞𝑘Σ, 𝑡) induce
coordinates (𝑝Σ,𝑘, 𝑠) on 𝑇∗𝑀, where 𝑠 is the function defined in equation (2.28). In terms
of these coordinates, Hamilton’s equations (2.27) become

̇𝑞𝑘Σ =
𝜕ℋ
𝜕𝑝Σ,𝑘

= 𝜕𝐻
𝜕𝑝Σ,𝑘

̇𝑝𝑘Σ = −𝜕ℋ
𝜕𝑞𝑘Σ

= − 𝜕𝐻
𝜕𝑞𝑘Σ

̇𝑡 = 1

̇𝑠 = −𝜕ℋ𝜕𝑡 = −𝜕𝐻𝜕𝑡

(2.29)

34



Os
To*M

We-
⑤

P TpP1

it, p =(y(v)

ToM Se
·

P TP1
spondto

B Ta

Figure 2: Local geometry of 𝒫ℒ.

Hence, as claimed earlier, with this choice of defining function ℋ, vortex curves are pa-
rameterized by 𝑡. The function 𝐻 is independent of 𝑠 and hence the first two equations
decouple from the last equation. Moreover, the projection of a vortex curve back down
into 𝑀 depends only on 𝑞Σ and 𝑡 along the curve, and hence the final equation plays no
role in these projections and can be ignored. Hence the first two equations are the pri-
mary evolution equations, and these are the familiar equations of motion stemming from
a time-dependent Hamiltonian.

It remains to show that𝒫ℒ has the claimed structure as a graph near 𝑝0 and to compute the
function𝐻 from ℒ. Corollary 2.12 implies that

𝑇𝑝0𝒫 = 𝑣⟂0 .

Since 𝑑𝑡(𝑣0) ≠ 0, 𝑑𝑡 is transverse to 𝑇𝑝0𝒫ℒ. Since 𝑑𝑡 spans the kernel of the projection
𝑇∗𝑀 → 𝑇∗Σ, it follows that the restriction of this projection to 𝒫ℒ near 𝑝0 is full rank and
locally a diffeomorphism. Its inverse function takes 𝑝Σ to 𝑝Σ − 𝐻(𝑞𝜎, 𝑝Σ, 𝑡)𝑑𝑡 for some
function𝐻, which establishes the local graph structure.

As far as the value of𝐻 goes, if 𝑝 on 𝒫ℒ then

𝜕𝑡 ⨼ 𝑝 = 𝜕𝑡 ⨼ (𝑝Σ − 𝐻(𝑞Σ, 𝑝Σ, 𝑡)𝑑𝑡) = −𝐻(𝑞Σ, 𝑝Σ, 𝑡)
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But each 𝑝 on 𝒫ℒ has the form ℙℒ(𝑣) for some 𝑣 ∈ 𝑇𝑀 and

𝐻 = −𝜕𝑡 ⨼ 𝑝 = −𝜕𝑡 ⨼ ℙℒ(𝑣).

That is, up to a sign,𝐻 is the momentum conjugate to 𝜕𝑡.

We would like to write 𝐻 more explicitly as a function of 𝑝Σ. To do this, we introduce a
transformation 𝑇Σ → 𝑇∗Σ as follows. For 𝑣Σ ∈ 𝑇𝑞ΣΣ first consider the map

𝑣Σ → ℙℒ(𝜕𝑡 + 𝑣Σ)

into𝒫ℒ. For 𝜕𝑡+𝑣Σ near 𝑣0, this map has full rank since the kernel of𝐷ℙℒ at 𝑣0 is spanned
by 𝑣0, which is transverse to 𝑇Σ. We have already established that near 𝑝0 = ℙℒ(𝑣0) that
projection from 𝒫ℒ to 𝑇∗Σ is a local diffeomorphism and hence, near 𝑣0 we obtain diffeo-
morphism 𝕡(𝑣Σ) = ℙℒ(𝜕𝑡 + 𝑣Σ)|𝑇Σ. This is, in effect, a velocity to momentum transfor-
mation relative to the spacetime gauge, and we write its inverse function as 𝕧. In terms of
𝕧,

𝐻(𝑞Σ, 𝑝Σ, 𝑡) = −𝜕𝑡 ⨼ ℙℒ(𝜕𝑡 + 𝕧(𝑝Σ)).

We can make this expression appear more familiar by introducing the classical Lagrangian
𝐿 induced by ℒ and the spacetime gauge via the construction of Section ??. Using the
notation of this section,

𝐿(𝑣Σ, 𝑡) = (𝜕𝑡 + 𝑣Σ) ⨼ ℒ[span(𝜕𝑡 + 𝑣Σ)]
= 𝕤ℒ(𝜕𝑡 + 𝑣Σ).

The map 𝕡 is, in fact, the classical construction of spatial momenta. Indeed, if 𝛿𝑣Σ ∈ 𝑇Σ,

𝛿𝑣Σ ⨼ 𝕡(𝑣Σ) = 𝛿𝑣Σ ⨼ ℙℒ(𝜕𝑡 + 𝑣Σ)

= 𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝜕𝑡 + 𝑣Σ + 𝜖𝛿𝑣Σ)

= 𝑑
𝑑𝜖
|||𝜖=0

𝐿(𝜕𝑡 + 𝑣Σ + 𝜖𝛿𝑣Σ, 𝑡)

= 𝛿𝑣Σ ⨼
𝜕𝐿
𝜕𝑣Σ

(𝑣Σ, 𝑡).

That is, using the local coordinates 𝑞𝑘Σ introduced previously

𝕡(𝑣Σ) =
𝜕𝐿
𝜕𝑣𝑘Σ

𝑑𝑞𝑘Σ,
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which is the classical momentum determined by 𝑣Σ and 𝐿. The map 𝕧 is the usual local
inverse, which we have shown exists under the hypothesis that ℒ satisfies the maximum
rank condition and 𝑑𝑡(𝑣0) > 0. The computation of 𝜕𝑡 ⨼ ℙℒ in Section ?? then shows

𝐻 = −𝜕𝑡ℙℒ(𝜕𝑡 + 𝕧(𝑝Σ))
= 𝕧(𝑝Σ) ⨼ 𝑝Σ − 𝐿(𝕧(𝑝Σ), 𝑡)
= 𝑣𝑘Σ(𝑝Σ)𝑝Σ,𝑘 − 𝐿(𝑣Σ(𝑝Σ), 𝑡).

This is the classical time-dependent Hamiltonian determined from a time-dependent La-
grangian, and is the quantity appearing in equations (2.29).

2.12 Summary

1. Start with a fundamental Lagrangian ℒ. Perhaps it is expressed using a pragmatic
Lagrangian or a classical Lagrangian.

2. Compute the velocity-to-momentum map ℙℒ by taking derivatives of the associated
action density 𝕤ℒ. Both ℒ and 𝕤ℒ are gauge-independent, as is ℙℒ.

3. The image of ℙℒ, i.e. the set 𝒫ℒ of feasible momenta, is a thin subset of 𝑇∗𝑀, and
we assume ℒ satisfies the maximum rank condition so that locally it is an embedded
hypersurface of 𝑇∗𝑀.

4. 𝑇∗𝑀 posesses a universal 1-formΘ; the value of∫𝛾Θ of a curve in 𝑇∗𝑀 is the action
of the curve, a quantity independent of any Lagrangian.

5. Intervals Γ in 𝑀 having satationary action correspond (by lifting parameterizations
via ℙℒ) to curves in 𝒫ℒ for which the universal action 𝑆 on 𝑇∗𝑀 is stationary, but
only with respect to variations of curves in 𝒫ℒ.

6. Because action in theHamiltoian setting reduces to integrating a universal one-form,
variations of action are easy to compute and stationarity reduces to an algebraic con-
dition on tangent vectors 𝑇 along the cuve. SettingΩ = −𝑑Θ, we require 𝑇 ⨼Ω = 0
when restricted to 𝒫ℒ.

7. In fact,Ω has a 1-dimensional annihilator on hypersurfaces of 𝑇∗𝑀, which are then
foliated by stationary curves. These are the vortex curves.

37



8. Until this point, no gauge choices have been made.

9. If a local defining function ℋ for 𝒫ℒ is known, then the vector field 𝑋ℋ defined by
𝑋ℋ ⨼Ω = 𝑑ℋ is tangent to𝒫ℋ and is parallel to the vortex curves. We can integrate
it to obtain stationary curves in 𝒫ℒ.

10. The choice ofℋ selects, via 𝑋ℋ , a parameterization of the vortex curves.

11. If in addition to ℋ we make a choice of local coordinates, then the parameterized
vortex curves satisfy Hamilton’s equations, (2.27).

12. If a local defining function is not apparent, one can always be constructed by intro-
ducing a spacetime gauge (𝑡, 𝜕𝑡) on𝑀, which decomposes𝑀 = Σ × 𝐼.

13. The surface 𝒫ℒ is then expressed as a graph over 𝑇∗Σ × 𝐼 via a function𝐻(𝑞Σ, 𝑝Σ, 𝑡)
that is, up to a sign, the momentum conjugate to 𝜕𝑡 along𝒫ℒ. That is,𝐻 = −𝜕𝑡 ⨼ℙℒ.

14. In terms of the classical Lagrangian 𝐿 determined by ℒ and the spacetime gauge, we
computed that𝐻 = 𝑝Σ,𝑘𝑞𝑘Σ−𝐿. This expression was derived from computing 𝜕𝑡⨼ℙℒ
directly and was not given a priori.

15. The local defining function is ℋ = 𝑠 + 𝐻 where 𝑠 = 𝜕𝑡 ⨼ Θ and Hamilton’s equa-
tions become equations (2.29), the classical equations of motion associated with a
time-dependent Hamiltonian on 𝑇∗Σ. With this choice of ℋ, the vortex curves are
parameterized by 𝑡.

3 Elements of Symplectic Geometry

4 Actions on Higher-Dimensional Surfaces

In Section ?? we introduced fundamental Lagrangians which, in a coordinate indepen-
dent fashion, assign a number (the action) to compact one-dimensional submanifolds with
boundary of an ambient space. Field theory requires an analogous device which assigns an
action to higher-dimensional submanfolds.
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Before developing the abstract machinery, it is helpful to consider at a concrete example
from classical field theory, a massive scalar field with mass 𝑚 > 0. Let (𝑀𝑑+1, 𝑔) be a
Lorenzian manfiold and suppose 𝑢 ∶ 𝑀 → ℝ. If 𝐾 is a compact subset of𝑀 we can assign
an action to the pair (𝐾, 𝑢):

𝑆[𝐾, 𝑢] = ∫
𝐾
[−12𝑔(𝑑𝑢, 𝑑𝑢) − 𝑚𝑢2] 𝜇𝑔. (4.1)

We can think of action as a quantity, depending on 𝑢, that is assigned to arbitrary compact
regions of spacetime. In a similar way, a classical Lagrangian can be thought of as assigning
an action, depending on a curve 𝛾, to intervals 𝐼

∫
𝐼
𝐿( ̇𝛾, 𝑡) 𝑑𝑡.

In this comparison, (ℝ, 𝐼, 𝛾) directly corresponds to (𝑀, 𝐾, 𝑢).

Although coordinates in the traditional sense do not show up in the action (4.1), they are
there implicitly. There is a surface Γ ⊂ 𝑀×ℝ consisting of the points (𝑝, 𝑢(𝑝)) andwe have
used 𝑝 ∈ 𝑀 and 𝑢 ∈ ℝ as coordinates for this surface. To be clear, in this context, these are
completely reasonable coordinates to use. Moreover, this perspective can be generalized to
fiber bundles 𝐸 → 𝑀 and one can develop field theory based on jet bundles of sections of
𝐸 [?]. As geometrically natural as this approach is for suitable models, it is nevertheless a
coordinate-dependent description of field theory very much analogous to the coordinate-
dependent description of classical Lagrangians on curves. The point is that action should
be a number assgined to compact subset of Γ independent of how it is parameterized. If
a parameterization of Γ as a graph over 𝑀 is expedient for computation, one is welcome
use it. But there are contexts, such as fluids, where a graph-over-spacetime description is
not always natural and there is no single distinguished alternative parameterization of the
surface associated with the field (see Section ??).

Returning to themassive scalar field example, consider its associated graphΓ. We can assign
a density at each point of Γ as follows. We have a projection 𝜋𝑀 ∶ 𝑀×ℝ → 𝑀. Using this
projection, Γ acquires a Lorenzian metric ̃𝑔 = 𝜋∗𝑔. Similarly, we have a projection 𝜋ℝ and
a function ̃𝑢 = 𝜋∗ℝ id. At each point 𝑤 ∈ Γ we have a density on 𝑇𝑤Γ, namely

− [12 ̃𝑔(𝑑𝑢̃, 𝑑𝑢̃) + 𝑚𝑢̃2] 𝜇𝑔̃ (4.2)
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At 𝑤, this density depends on Γ only via its tangent space 𝑇𝑤Γ: two surfaces Γ and Γ′
passing through 𝑤 such that 𝑇𝑤Γ = 𝑇𝑤Γ′ also share the same density on this common
tangent space.

The benefit of this transformation is perhaps not evident: we’ve taken a familiar and servi-
cable action (4.2) and decorated it with a number of tildes while making it more abstract.
But this machine that consumes a tangent space and yields a density on the same tangent
space, generalizes the fundamental Lagrangians of section ?? and yields a theory that ap-
plies equally to sections of fiber bundles over spacetime as well as fluids and related fields
where the fiber bundle perspective is less natural. This section develops this generalization
of fundamental Lagragians from Section ??.

4.1 Densities

Densities on one-dimensional vector spaces played a central role in Section ??, and we now
require their higher-dimensional analogs. This section lightly reviews the facts we require,
and we refer the reader to [Le13] Chapter ?? and for further details.

need
another
reference

A density on an 𝑛-dimensional vector space 𝑉 is a map 𝜇 ∶ 𝑉𝑛 → ℝ satisfying for any
linear map 𝑇 ∶ 𝑉 → 𝑉

𝜇(𝑇𝑣1,… , 𝑇𝑣𝑛) = | det𝑇| 𝜇(𝑣1,… , 𝑣𝑛). (4.3)

It assigns a notion of “area” to the vector space: the area of the solid spanned by vectors
𝑣𝑘 is 𝜇(𝑣1,… , 𝑣𝑘). Unlike an 𝑛-form, the value of 𝜇 always has the same sign whenever
its arguments are linearly independent. Nevertheless, just as for 𝑛-forms, we can assign a
linear structure to the set 𝒟(𝑉) of densities on 𝑉 , and indeed it is one dimensional. The
linear structure is the natural one: the sum of two densities is evidently again a density,
and a scalar multiple of a density is also a density. Moreover, equation (4.3) implies that
the value of a density is zero whenever its arguments are linearly dependent, and that if its
value is known for some basis, then its value is known for every set of linearly indepen-
dent arguments. It follows that the space of densities is one-dimensional so long as there
is some non-zero density. In fact, any nonzero 𝑛-form 𝜔 determines a nonzero density by
the following construction. We define the density |𝜔| by

|𝜔|(𝑣1,… , 𝑣𝑛) ∶= |𝜔(𝑣1,… , 𝑣𝑛|
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for arbitrary vectors 𝑣𝑖 ∈ 𝑉 . The analogous formula to (4.3) for 𝑛-forms shows that |𝜔| is
a density on 𝑉 , and it equals zero if and only if 𝜔 = 0.

If 𝑣 ∈ 𝑉 and if𝑊 is an 𝑛 − 1 dimensional subspace of 𝑉 , we obtain an 𝑛 − 1 density 𝑣 ⨼ 𝜇
on𝑊 by

(𝑣 ⨼ 𝜇)(𝑤1,… ,𝑤𝑛−1) = 𝜇(𝑤1,… ,𝑤𝑛−1, 𝑣).
Repeated interior products yield densities on lower dimensional subspaces.

The tangent bundle of a manifold 𝑀 aquires a bundle of densities over it by a standard
construction. Following [Le13], we denote it by

𝒟𝑀 = ∐
𝑝∈𝑀

𝒟(𝑇𝑝𝑀).

It is a line bundle over 𝑀 and indeed is trivial. For example, the volume density of any
metric on𝑀 determines a global section.

A section 𝜇 of 𝐷(𝑀) can be integrated over compact subsets of𝑀𝑑. For example, suppose
𝐷 ⊂ ℝ𝑛 is a domain of integration (a bounded subset with boundary having measure zero)
and 𝜙 ∶ 𝐷 → 𝑀 is a diffeomorphism onto its image. Then

∫
𝐾
𝜇 = ∫

𝐾
𝜇(𝜙∗𝜕1,… , 𝜙∗𝜕𝑛) 𝑑𝑉ℝ𝑑

where the latter integral is with respect to standard Lebesguemeasure onℝ𝑑. Equation (4.3)
and the usual change-of-variables formula ensures that that this definition is independent
of the choice of parameterization. A partition of unity argument allows for integration over
compact sets in𝑀 that are not diffeomorphic to compact subsets of ℝ𝑛.

If 𝑓 ∶ 𝑋𝑛 → 𝑌𝑛 is smooth, we can pull a density 𝜇 on 𝑌 back to 𝑓∗𝜇 on 𝑋 in the usual way:
𝑓∗𝜇(𝑣1,… , 𝑣𝑛) = 𝜇(𝑓∗𝑣1,… , 𝑓∗𝑣𝑛). Since densities form a linear space, and since they
admit a suitable notion of pullback, the standard formula for the Lie derivative extends to
densities.

Stokes’s theorem for differential forms is intrinsically linked to orientation and does not
generalize fully to densities. Nevertheless, we can define the divergence of a vector field 𝑋
with respect to a nonvanishing density 𝜇 by

(div𝜇𝑋)𝜇 = Lie𝑋 𝜇.
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Moreover, a form of the divergence theorem holds. For a compact manifold with boundary
Ω,

∫
Ω

Lie𝑋 𝜇 = ∫
𝜕Ω

sgn(𝑋) 𝑋 ⨼ 𝜇.

where sgn(𝑋) = −1, 0, 1 at each point of 𝜕Ω depending on whether 𝑋 points to the inte-
rior, tangentially, or to the exterior of 𝜕Ω. In particular, if 𝜇𝑔 is the volume density of a
Riemannian metric and 𝑛 is the outward pointing unit normal to 𝜕Ω,

∫
Ω

div𝑋𝜇)𝑔 = ∫
𝜕Ω

𝑔(𝑋, 𝑛) 𝑛 ⨼ 𝜇.

4.2 Blades and Multivectors

A tangent vector represents an infinitesimal parameterized curve. We require a kind of
analogous construction for higher-dimensional parameterized surfaces; these are the 𝑘-
blades which are dual versions of decomposable 𝑘-exterior forms. This section summarizes
their construction.

Let 𝑉𝑑 be a finite dimensional vector space. A rank 𝑘 contravariant tensor 𝛼 ∈ 𝑇𝑘𝑉 is
canonically identified with a multilinear map 𝑉∗×⋯×𝑉∗ → ℝ and it is alternating if its
value changes sign when two of its arguments is interchanged. An alternating rank 𝑘 con-
tranvariant tensor is a (𝑘−)multivector and the set of all 𝑘-multivectors is Λ𝑘𝑉 . Similarly,
Λ𝑉 is the set of all multivectors of any rank.

This construction is likely more familiar in the covariant case: Λ𝑉∗ is the set of exterior
forms on 𝑉 and properties of multivectors can be deduced from those of exterior forms
by exchanging 𝑉 and 𝑉∗. In particular, Λ𝑉 is a graded algebra with the exterior product
defined on vectors by

𝑣 ∧ 𝑤 = 𝑣 ⊗ 𝑤 − 𝑤⊗ 𝑣
and generalized to arbitrary multivectors in the same fashion as for exterior forms.

An element of Λ𝑘𝑉 of the form
𝑣1 ∧⋯ ∧ 𝑣𝑘 (4.4)

where each 𝑣𝑗 ∈ 𝑉 is a 𝑘-blade (and is also more commonly known as a decomposable
element of Λ𝑉). We write 𝐵𝑘𝑉 for the set of 𝑘-blades. These linearly span Λ𝑘𝑉 , which is a
(𝑑
𝑘
) dimensional subspace of Λ𝑉 for 𝑘 ≤ 𝑑 and otherwise is a zero-dimensional subspace.
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If 𝑣𝑗 , 𝑗 = 1..𝑘 is a collection of vectors and if 𝑤𝑖 = 𝑇𝑗𝑖 𝑣𝑗 for some matrix 𝑇 of coefficients,
then

𝑤1 ∧⋯ ∧ 𝑤𝑘 = det𝑇 𝑣1 ∧⋯ ∧ 𝑣𝑘. (4.5)

This formula is the basis of half of the proof of the following.
maybe
prove thisLemma 4.1. Suppose 𝐯 = 𝑣1 ∧ ⋯ ∧ 𝑣𝑘 and 𝐰 = 𝑤1 ∧ ⋯ ∧ 𝑤𝑘 are nonzero elements of

𝐵𝑘𝑉 and that 𝐯 = 𝛼𝐰 for some 𝛼 ∈ ℝ. Then span(𝑣1,… , 𝑣𝑘) = span(𝑤1,… ,𝑤𝑘), and
conversely.

Hence a nonzero 𝑘-blade 𝑣1 ∧⋯ ∧ 𝑣𝑘 determines a 𝑘-dimensional subspace of 𝑉 :

⟨𝑣1 ∧⋯ ∧ 𝑣𝑘⟩ = span(𝑉1,… , 𝑉 𝑘). (4.6)

If 𝛼 ∈ Λ𝑘𝑉 and 𝜔 ∈ Λ𝑘𝑉∗ we define the interior product

𝛼 ⨼ 𝜔 = 1
𝑘!𝛼 ⋅ 𝜔

where ⋅ denotes tensor contraction. For example, if 𝑣𝑖 ∈ 𝑉 and 𝜔𝑗 ∈ 𝑉∗, 𝑗 = 1, 2, then

𝑣1 ∧ 𝑣2 ⨼ 𝜔1 ∧ 𝜔2 =
1
2 [(𝑣1 ⊗ 𝑣2 − 𝑣2 ⊗ 𝑣1) ⋅ (𝜔1 ⊗𝜔2 − 𝜔2 ⊗𝜔1)]

= 𝜔1(𝑣1)𝜔2(𝑣2) − 𝜔2(𝑣1)𝜔1(𝑣2)
= det(𝜔𝑗(𝑣𝑖))

More generally,
𝑣1 ∧⋯ ∧ 𝑣𝑘 ⨼ 𝜔1 ∧⋯𝜔𝑘 = det(𝜔𝑗(𝑣𝑖))

which motivates the coefficient 1/𝑘! appearing in the definition of the interior product. We
can also form the interior product of a 𝑑-blade 𝛼 and a density on 𝑉 itself: if 𝜇 is such a
density, then 𝜇 = 𝑐|𝜔| for some 𝑘-form 𝜔 and some 𝑐 ∈ ℝ and we define

𝛼 ⨼ 𝜇 = 𝑐|𝛼 ⨼ 𝜔|.

One readily shows that this definition is indpendent of the choice of 𝜔.

The linear space construction extends to the tangent space of a manifold 𝑀 and have the
bundle of 𝑘-multivectors

Λ𝑘𝑇𝑀 = ∐
𝑝∈𝑀

Λ𝑘𝑇𝑝𝑀
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analogous to the bundle of 𝑘-forms Λ𝑘𝑇∗𝑀. The set of sections of this bundle is 𝔛𝑘(𝑀),
generalizing the set 𝔛(𝑀) of vector fields. Similarly,

𝐵𝑘𝑇𝑀 = ∐
𝑝∈𝑀

𝐵𝑘𝑇𝑝𝑀

is the bundle of 𝑘-blades over𝑀 and is an embedded submanifold of Λ𝑘𝑇𝑀.

If 𝑓 ∶ 𝑀 → 𝑁 is smooth it induces maps 𝑓∗Λ𝑘𝑇𝑀 → Λ𝑘𝑇𝑁 and 𝑓∗𝐵𝑘𝑇𝑀 → 𝐵𝑘𝑇𝑁 as
follows. For a blade 𝐯 = 𝑣1 ∧⋯ ∧ 𝑣𝑘,

𝑓∗𝐯 = (𝑓∗𝑣1) ∧ ⋯ ∧ (𝑓∗𝑣𝑘).

Lemma 4.1 ensures that 𝑓∗ is well defined. Every 𝑘-multivector is a linear combination of
blades, and we extend 𝑓∗ toΛ𝑘𝑇𝑀 by linearity. One needs to show that this is well defined.

do this
for self.A tangent vector 𝑉 represents an infinitesimal parameterized curve and an ordered col-

lection of tangent vectors (𝑉1,… , 𝑉 𝑘) can be thought of as an infinitesimal parameterized
𝑘-surface. A 𝑘-blade extracts just the part needed from the parameterization needed to
compute integrals. Indeed, suppose 𝜔 ∈ Ω𝑘(𝑀) is a 𝑘-form and that Φ ∶ 𝐷 → 𝑀 is a
smooth function that is a diffeomorphism onto it image. Then

∫
Φ(𝐷)

𝜔 = ∫
𝐷
𝜕1Φ ∧⋯ ∧ 𝜕𝑘Φ ⨼ 𝜔 𝑑𝑉ℝ𝑑 .

Because of this we introduce the notation

𝒥Φ = 𝜕1Φ ∧⋯ ∧ 𝜕𝑘Φ.

Similarly, suppose 𝜇 ∈ Γ(𝒟𝑇𝑀,𝑀) and suppose Φ ∶ 𝐷 ⊂ ℝ𝑑 → 𝑀 is a diffeomorphism
onto its image. Then

∫
Φ(𝐷)

𝜇 = ∫
𝐷
𝒥 ⨼ 𝜇 𝑑𝑉ℝ𝑑 .

4.3 Densities over Grassman Bundles

In Section 2.2 we described the bundle of densities over projective tangent bundles, which
use bold
math for
blades,
not greek

we now generalize to higher-dimensional subspaces.
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Let 𝑉𝑑 be a vector space. For each 0 ≤ 𝑘 ≤ 𝑑 we have the Grassman manifold G𝑘(𝑉) of
𝑘-dimensional subspaces of 𝑉 . As a set, the Grassman bundle of order 𝑘 over some 𝑀𝑑

with 𝑑 ≥ 𝑘 is
∐
𝑝∈𝑀

G𝑘(𝑇𝑝𝑀)

and it acquires the structure of a smooth bundle over𝑀 denoted by G𝑘𝑇𝑀.

Each element 𝓅 ∈ G𝑘(𝑇𝑝𝑀) is a 𝑘-dimensional vector space and hence has a bundle of
densities𝒟(𝓅) over it. Hence we obtain the bundle

𝒟G𝑘(𝑇𝑀) = ∐
𝓅∈G𝑘(𝑇𝑀)

𝒟(𝓅)

which, in a standard construction, becomes a line bundle (consisting of densities) over
G𝑘(𝑇𝑀). As in the lower-dimensional setting, the object being described here is more ap-
proachable than the machinery and notation needed to make it rigorous. Each element of
𝒟G𝑘(𝑇𝑀) is simply a density on a 𝑘-dimensional subspace of a tangent space of𝑀.

4.4 Fundamental Lagrangians

At least initially, the theory of Lagrangians on higher-dimensional surfaces closely parallels
what we have already laid out for Lagrangians on curves in Section 2. So we proceed briskly
for now.

Definition 4.2. Let𝑀𝑑 be amanifold and suppose 1 ≤ 𝑘 ≤ 𝑑. A fundamental Lagrangian
of order 𝑘 on𝑀 is a section ℒ of𝒟G𝑘(𝑇𝑀) over an open subset of G𝑘(𝑇𝑀).

Supposeℒ is a fundamental Lagrangian of order 𝑘 on some manifold𝑀 let 𝐹 be a compact
𝑘-dimensional submanifold with boundary of 𝑀 such that 𝑇𝑞𝐹 is in the domain of ℒ for
all 𝑞 ∈ 𝐹. Such a submanfiold is called admissible with respect to ℒ. Let 𝜄 be the natural
embedding of 𝐹 into 𝑀. At each 𝑞 ∈ 𝐹, 𝜄∗(𝑇𝑞𝐹) is a 𝑘-dimensional subspace of 𝑀 and
ℒ[𝜄∗(𝑇𝑞Γ)] is a density on 𝜄∗(𝑇𝑞(Γ)). Moreover, it determines a density 𝜄∗ℒ on 𝑇𝑞(𝐹) via

𝜄∗ℒ(𝑣1,… , 𝑣𝑘) = ℒ(𝑇𝑞Γ)(𝜄∗𝑣1,… , 𝜄∗𝑣𝑘).

The action of 𝐹 with respect to ℒ is

𝑆ℒ[Γ] = ∫
Γ
𝜄∗ℒ.
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If Φ ∶ 𝐷 → 𝐹 is a diffeomorphism from a domain of integration 𝐷 ⊂ ℝ𝑘 onto its image
then

𝑆ℒ[Φ(𝐷)] = ∫
𝐷
𝒥Φ ⨼ ℒ[⟨𝒥Φ⟩]𝑑𝑉ℝ𝑑

where ⟨𝐽Φ⟩ is the subspace determined by 𝐽Φ as defined in equation (4.6).

If 𝐹 is a compact 𝑘-dimensional submanifold with boundary in 𝑀, a variation of 𝐹 is a
mismatch:
domains
of inte-
gration
are open.
Their
images
are never
compact.

smooth family of maps Φ𝑠 ∶ 𝐹 → 𝑀 for 𝑠 ∈ (−𝜖, 𝜖) for some 𝜖 > 0 satisfying

1. Φ0 = id,

2. Φ𝑠|𝜕𝐹 = id for all 𝑠 ∈ (−𝜖, 𝜖).

We say 𝐹 is stationary for the action if

𝑑
𝑑𝑠
|||𝑠=0

𝑆ℒ[Ψ𝑠(Γ)] = 0.

for every variation of 𝐹.

The action density associated with ℒ is the map 𝕤ℒ defined by

𝕤ℒ(𝐯) = 𝛼 ⨼ ℒ[⟨𝐯⟩]

for all 𝑘-blades 𝐯 such that ⟨𝐯⟩ lies in the domain of ℒ. Hence it is a smooth map from an
open subset of𝐵𝑘𝑇𝑀 toℝ. The following analog of Lemma 4.3 follows from the definitions.

Lemma 4.3. Let 𝕤ℒ be the action density of a fundamental Lagrangian 𝐿. For any 𝑘-blade 𝐯
such that ⟨𝐯⟩ is in the domain of ℒ,

𝕤ℒ(𝛼 𝐯) = |𝛼| 𝕤ℒ(𝐯) (4.7)

for all nonzero 𝛼 ∈ ℝ.

4.5 Pragmatic Lagrangians

The following definition parallels the definition of pragmatic Lagrangian from section 2.4.
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Definition 4.4. Let 𝑀𝑑 be a manifold, and let 𝑈 be an open subset of 𝐵𝑘𝑇𝑀 consisting
of nonzero 𝑘-blades such that whenever 𝐯 ∈ 𝑈 , 𝛼𝐯 ∈ 𝑈 for all 𝛼 ≠ 0. A pragmatic
Lagrangian on 𝑈 is a smooth bundle map map 𝕃 ∶ 𝑈 → Λ𝑘𝑇∗𝑀 satisfying

𝕃(𝛼𝐯) = 𝛼
|𝛼|𝕃(𝐯)

for all 𝐯 ∈ 𝑈 and all nonzero 𝛼 ∈ ℝ.

This definition reduces to that of Definition ?? when 𝑘 = 1 but it is important to observe
that the cases 𝑘 = 1 and 𝑘 = 𝑑 − 1 are special. In general, the 𝑘-blades are a strictly
embedded submanifold of the bundle of 𝑘-multivectors. However, 𝐵1𝑇𝑀 = Λ1𝑇𝑀 = 𝑇𝑀
and 𝐵𝑑−1𝑇𝑀 = Λ𝑑−1𝑇𝑀 and in these cases the fibers over𝑀 are vector spaces. This leads
to some significant simplifications in these cases and I don’t have the full theory worked out
for the intermediate values of 𝑘 yet. Yet.

Let 𝕃 be a practical Lagrangian. It induces a fundamental Lagrangian with domain con-
sisting of the elements of 𝐺𝑘𝑇𝑀 of the form ⟨𝐯⟩ for some 𝐯 in the domain of 𝕃 as follows.
Consider some ⟨𝐯⟩ and let 𝑤1,… ,𝑤𝑘 be vectors in ⟨𝐯⟩. We define

𝜇⟨𝐯⟩(𝑤1,… ,𝑤𝑘) = (𝑤1 ∧⋯ ∧ 𝑤𝑘) ⨼ 𝕃(𝑤1 ∧⋯ ∧ 𝑤𝑘)

with the understanding that 𝕃(0) = 0. To see that this defines a density on ⟨𝐯⟩, con-
sider some linear map 𝑇 ∶ ⟨𝐯⟩ → ⟨𝐯⟩. If det𝑇 = 0 or if 𝑤1 ∧ ⋯ ∧ 𝑤𝑘 = 0 then
𝜇⟨𝐯⟩(𝑇𝑤1,… , 𝑇𝑤𝑘) = | det𝑇|𝜇⟨𝐯⟩(𝑤1,… ,𝑤𝑘) trivially. Otherwise,

𝜇⟨𝐯⟩(𝑇𝑤1,… , 𝑇𝑤𝑘) = (𝑇𝑤1 ∧⋯ ∧ 𝑇𝑤𝑘) ⨼ 𝕃(𝑇𝑤1 ∧⋯ ∧ 𝑇𝑤𝑘)
= (det𝑇𝑤1 ∧⋯ ∧ 𝑤𝑘) ⨼ 𝕃(det𝑇𝑤1 ∧⋯ ∧ 𝑤𝑘)

= det𝑇(𝑤1 ∧⋯ ∧ 𝑤𝑘) ⨼
det𝑇
| det𝑇|𝕃(𝑤1 ∧⋯ ∧ 𝑤𝑘)

= | det𝑇|𝜇⟨𝐯⟩(𝑤1,… ,𝑤𝑘)

as required.

Ametric on amanifold𝑀 induces, fiberwise, ametric on𝐵𝑘𝑇𝑀. Using this fact one readily
adapts the argument of Lemma 2.6 and we obtain the following.

Lemma 4.5. Letℒ be a fundamental Lagrangian on𝑀. There exists a pragmatic Lagrangian
𝕃 on𝑀 that induces ℒ:

ℒ = ℒ𝕃.
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Concretely, if 𝑔 is a metric on𝑀 then we can take

𝕃(𝐯) = (𝐯 ⨼ ℒ[⟨𝐯⟩]) 𝐯
♭

|𝐯|2𝑔

where 𝐯♭ is the 𝑘-form dual, via 𝑔, to the 𝑘-blade 𝐯.

If 𝕃 induces ℒ then
𝕤(𝐯) = 𝐯 ⨼ 𝕃(𝐯).

IfΦ ∶ 𝐷 → 𝑀 is a parameterization ofΦ(𝐷) for some domain of integragion𝐷 ⊂ ℝ𝑘 then

𝑆ℒ[Φ(𝐷)] = ∫
𝐷
𝒥Φ ⨼ 𝕃(𝐽Φ) 𝑑𝑉ℝ𝑘 .

4.6 Examples

4.6.1 Surface Area

Let (𝑀𝑑, 𝑔) be a Riemannian metric and suppose 1 ≤ 𝑘 ≤ 𝑑. Each 𝑘-dimensional sub-
space of a tangent space 𝑇𝑞𝑀 inherits a Riemannian density 𝜇𝑔,𝑘, and this is a fundamental
Lagrangian. We can represent it in terms of a pragmatic Lagrangian as follows:

𝕃(𝐯) = 𝐯♭
|𝐯|𝑔

where 𝐯♭ is the 𝑘-form dual (via 𝑔) to 𝐯.

4.6.2 Scalar Fields

The ambient manifold is𝑀×ℝwhere (𝑀𝑑+1, 𝑔) is a Lorenzianmetric. Let𝓀 be an element
of 𝐺𝑑+1𝑇(𝑀 × ℝ) with a full rank projection onto 𝑀 (i.e., (𝜋𝑀)∗|𝓀 is full rank). Then 𝓀
acquires two constructs: a Lorenzian metric ̃𝑔 = 𝜋∗𝑀𝑔 and a covector 𝑑𝑢 = 𝜋∗ℝ𝑑𝑢, where
𝑢 is the coordinate on ℝ. Then

ℒ[𝓀] = − ̃𝑔(𝑑𝑢, 𝑑𝑢)𝜇𝑔̃.
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We can describe this Lagrangian in terms of a pragmatic Lagranian presented in local coor-
dinates (𝑥0,… , 𝑥𝑑, 𝑢) on𝑀 ×ℝ. Let 𝜕0,… , 𝜕𝑑, 𝜕𝑢 and 𝑑𝑥0,… , 𝑑𝑥𝑑, 𝑑𝑢 be the associated
coordinate vectors and 1-forms. A generic (𝑑 + 1)-blade that projects fully onto𝑀 has the
form

𝐯 = 𝛼((𝑑𝑥0 + 𝑢0𝜕𝑢) ∧ ⋯ ∧ (𝑑𝑥𝑑 + 𝑢𝑑𝜕𝑢)) = 𝛼(𝐰 +
𝑑
∑
𝑗=0

𝑢𝑗𝜕𝑢 ∧ (𝑑𝑥𝑗 ⨼ 𝐰𝑥))

where 𝛼 and 𝑢𝑗 are coefficients and where 𝐰𝑥 = 𝜕0 ∧⋯ ∧ 𝜕𝑑. Then

𝕃(𝐯) = − 𝛼
2|𝛼|𝑔

𝑖𝑗𝑢𝑖𝑢𝑗√− det 𝑔 𝑑𝑥0 ∧⋯ ∧ 𝑑𝑥𝑑.

This same pragmatic Lagrangian can be described without coordinates as follows. Let𝐺 be
themetric 𝑔+𝑑𝑢2 on𝑀×ℝ. Let 𝑑𝑉𝑔 be one of the two volume forms on𝑀 and pull it back,
with the same name, to 𝑀 × ℝ. The metric on 𝑀 × ℝ induces a metric on 𝑘-blades such
that 𝐺(𝑒1 ∧ ⋯ ∧ 𝑒𝑘, 𝑒1 ∧ ⋯ ∧ 𝑒𝑘) = 𝑔(𝑒1, 𝑒1)⋯𝑔(𝑒𝑘, 𝑒𝑘) whenever the 𝑒𝑗 ’s are mutually
orthogonal. Let 𝐰 be a 𝑑 + 1 blade in 𝑀 × ℝ that is parallel to 𝑀 such that 𝑑𝑉𝑔(𝐰) = 1;
this specifies 𝐰 completely. Then

𝕃(𝐯) = 1
2
𝐺(𝐯,𝐰)
|𝐺(𝐯,𝐰)|𝐺 (

𝐯 + 𝐺(𝐯,𝐰)𝐰
𝐺(𝐯,𝐰) , 𝐯 + 𝐺(𝐯,𝐰)𝐰

𝐺(𝐯,𝐰) ) 𝑑𝑉𝑔.

4.6.3 Dust

4.6.4 Charged Scalar Fields

4.7 The Tangent Space and Cotangent Space of 𝐵𝑘𝑉

In this section explain

• The 𝑘-multivectors on 𝑉𝑑 are a (𝑑
𝑘
) dimensional vector space.

• The 𝑘-blades are, by contrast, a 𝑘(𝑑 − 𝑘) + 1 dimensional submanifold of the 𝑘mul-
tivectors. At 𝐯 = 𝑒1 ∧ ⋯ ∧ 𝑒𝑘 the tangent space is spanned by 𝐯 itself along with
𝑒𝑗 ∧ (𝑒𝑖 ⨼ 𝐯 with 1 ≤ 𝑖 ≤ 𝑘 and 𝑘 + 1 ≤ 𝑗 ≤ 𝑑.
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• If 𝑘 = 0, 𝑘 = 1, 𝑘 = 𝑑 − 1 or 𝑘 = 𝑑 then the dimension counts coencide and the
𝑘-blades are exactly the 𝑘-multivectors and acquire a vector space structure.

• When 𝑘 = 0 the 𝑘-blades are just the scalars, which are the 0-multivectors and the
space is 1-dimensional.

• If 𝑘 = 1 then the 1-blades comprise 𝑉 itself, and the space is 𝑑 dimensional. This is
the setting of particle mechanics.

• If 𝑘 = 𝑑 − 1 then the space of blades is again 𝑑-dimensional and is the entirety of
Λ𝑘−1𝑉 .

• When 𝑘 = 𝑑 then the space of blades is simply the one-dimensional space of 𝑑-
multivectors.

• For these four cases, 𝑇𝐯𝐵𝑘𝑉 can be identified withΛ𝑘𝑉 and its dual space is naturally
identitified with Λ𝑘𝑉∗.

• Otherwise, 𝑇𝐯𝐵𝑘𝑉 is a subspace of Λ𝑘𝑉 .

• Every element of Λ𝑘𝑉∗ determines an element of 𝑇𝐯𝐵𝑘.

• But some nonzero elements of Λ𝑘𝑉∗ vanish on 𝑇𝐯𝐵𝑘. Let’s call that space 𝐾𝐯. It is a
linear subspace and indeed

dim𝐾𝐯 = (𝑑𝑘) − 𝑘(𝑑 − 𝑘) − 1.

• We can identify 𝑇𝐯𝐵𝑘𝑉 with Λ𝑘𝑉∗/𝐾𝐯.

• This identification depends on 𝐯, which is inconvenient anddoes not allowus to easily
parallel the construction of momenta as elements of a space that is independent of
𝐯. For particle mechanics, a momentum corresponding to 𝐯 ∈ 𝑇𝑞𝑀 is an element of
𝑇∗𝑞𝑀 with no reference to the 𝐯 that generated it.

• We go down the least worst path: momenta will admit more than one representation.
Momenta will be elements of Λ𝑘𝑇∗𝑀 and it will simply be the case that there is a
whole subspace of equivalentmomenta once a corresponding ‘conjugate velocity’ has
been determined.
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4.8 Momentum

Letℒ be a fundamental Lagrangian of order 𝑘 and, for simplicity of discussion assume that
its domain is all of 𝐵𝑘𝑇𝑀. The action density assocated with ℒ is

𝕤ℒ(𝐯) = 𝐯 ⨼ ℒ[⟨𝐯⟩]

which is a smooth map 𝐵𝑘𝑇𝑀 → ℝ. Fix 𝑞 ∈ 𝑀 and let 𝕤ℒ,𝑞 be the restriction of 𝕤ℒ to
𝐵𝑘𝑇𝑞(𝑀). In Section 2.7 we considered the case 𝑘 = 1 and defined

ℙℒ(𝐯) = 𝐷𝕤ℒ,𝑞|𝐯 ∈ 𝑇∗𝐯 𝑇𝑞𝑀 = 𝑇∗𝑞𝑀 = (Λ1𝑇∗)𝑞𝑀.

In this way we obtained a bundle map

𝐵1𝑇𝑀 = 𝑇𝑀 → 𝑇∗𝑀 = Λ1𝑇∗𝑀.

We would like to replicate this procedure for other values of 𝑘, but in general we cannot
identify

𝑇∗𝐵𝑘𝑇𝑞𝑀 ∼ (Λ𝑘𝑇∗)𝑞𝑀
Instead, as discussed in the previous section, every element of𝑇∗𝐵𝑘𝑇𝑞𝑀 can be represented
by an elements of Λ𝑘𝑇∗𝑞𝑀, but for 𝑘 ≠ 0, 1, 𝑑 − 1, 𝑑 there an entire subspace of Λ𝑘𝑇∗𝑞𝑀
that represents the same element of 𝑇∗𝐵𝑘𝑇𝑞𝑀.

With this important distinction in mind, we define define

ℙℒ(𝐯) = {𝜔 ∈ Λ𝑘𝑇∗𝑞𝑀 ∶ 𝜔|𝑇𝐯𝐵𝑘𝑇𝑞𝑀 = 𝐷𝕤ℒ,𝑞||𝐯} .

The momentum determined by the 𝑘-blade 𝐯 at 𝑞 ∈ 𝑀 is an entire affine subspace of
Λ𝑘𝑇∗𝑞𝑀, all of which represent the same element of 𝑇∗𝐯 𝐵𝑘𝑇𝑞𝑀.

If 𝐰 ∈ 𝑇𝐯𝐵𝑘𝑇𝑀 we can unambiguously define

𝐰 ⨼ ℙℒ(𝐯) = 𝐰 ⨼ 𝜔

where𝜔 is any element ofℙℒ(𝐯) since any two such elements differ by an element ofΛ𝑘𝑇∗𝑞𝑀
that vanishes on 𝑇𝐯𝐵𝑘𝑇𝑀.

Let 𝛾 be a curve in 𝐵𝑘𝑇𝑞𝑀 with 𝛾(0) = 𝐯 and ̇𝛾(0) = 𝐰 ∈ 𝑇𝐯𝐵𝑘𝑇𝑞𝑀. Then

𝐰 ⨼ ℙℒ(𝐯) =
𝑑
𝑑𝜖
|||𝜖=0

𝕤ℒ(𝛾(𝜖)). (4.8)
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4.9 Consequences of Parameterization Invariance

Lemma 4.6. Supposeℒ is a fundamental Lagrangian of order 𝑘 on𝑀. Its associated velocity-
to-momentum map ℙℒ satisfies

ℙℒ(𝛼𝐯) =
𝛼
|𝛼|ℙℒ(𝐯)

for all 𝛼 ≠ 0 and all 𝐯 ∈ 𝐵𝑘𝑇𝑀 with ⟨𝐯⟩ in the domain of ℒ. Moreover,

𝐯 ⨼ ℙℒ(𝐯) = 𝐯 ⨼ ℒ[⟨𝐯⟩] = 𝕤ℒ(𝐯).

Proof. Let 𝛾 be a curve in 𝐵𝑘𝑇𝑀 with 𝛾(0) = 𝐯 and ̇𝛾(0) = 𝛿𝐯 ∈ 𝑇𝐯𝐵𝑘𝑇𝑀. Then

(𝛿𝕧) ⨼ (ℙℒ(𝛼𝐯)) =
𝑑
𝑑𝜖
|||𝜖=0

𝕤(𝛼𝛾(𝜖/𝛼))

= |𝛼| 𝑑𝑑𝜖
|||𝜖=0

= |𝛼|𝛿𝐯𝛼 ⨼ ℙℒ(𝐯)

= 𝛼
|𝛼|𝛿𝐯 ⨼ ℙℒ(𝐯).

Moreover,

𝐯 ⨼ ℙℒ(𝐯) =
𝑑
𝑑𝜖
|||𝜖=0

𝕤(𝐯 + 𝜖𝐯) = 𝑑
𝑑𝜖
|||𝜖=0

|1 + 𝜖|𝕤(𝐯) = 𝕤(𝐯) = 𝐯 ⨼ ℒ[⟨𝐯⟩].

Feasible Momenta The feasible momenta are

𝒫ℒ = ∪𝐯∈𝑈{ℙℒ(𝐯)}

which is, on the face of things, a subset of Λ𝑘𝑇∗𝑀. Somewhere around here talk about the
”rank” of ℙℒ. Maybe via an intermediate map into 𝑇∗𝐵𝑘𝑇𝑞𝑀. And establish that in the
generic case, 𝒫ℒ is locally a hypersurface in Λ𝑘𝑀.
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4.10 Action From the Hamiltonian Perspective

If Ψ ∶ 𝐷 → 𝐹 is a parameterization,

𝑆ℒ[𝐹] = ∫
𝐷
𝒥Φ ⨼ 𝐿[⟨𝒥Φ⟩].

Using Lemma 4.6 we can rewrite this as

𝑆ℒ[𝐹] = ∫
𝐷
𝒥Φ ⨼ ℙℒ(𝒥Φ)𝑑𝑉ℝ𝑘 .

Tautological 𝑘-form: At 𝑝 ∈ Λ𝑘𝑇𝑞𝑀

Θ𝑘(𝑣1,… , 𝑣𝑘) = 𝑝(𝜋∗𝑣1,… , 𝜋∗𝑣𝑘).

In terms of coordinates,
Θ = 𝑝𝐼𝑑𝑞𝐼

where 𝐼 is an increasing sequence of integers in 1,… , 𝑑 and where 𝑑𝑞𝐼 = 𝑑𝑞𝐼1 ∧⋯∧𝑑𝑞𝐼𝑘 .

We say Ψ̃ ∶ 𝑀 → Λ𝑘𝑇∗𝑀 is a lift of Ψ if

Ψ̃(𝑞) ∈ ℙℒ(𝒥Ψ(𝑞))

at each point 𝑞 in the domain of Ψ. For such a lift,

𝑆ℒ[𝐹] = ∫
𝐷
𝒥Φ ⨼ Ψ̃(𝑞)𝑑𝑉ℝ𝑘 = ∫

Ψ̃
Θ𝑘.

Motivated by this, for anymap Ψ̃ from a domain of integration inℝ𝑘 intoΛ𝑘𝑇∗𝑀 we define
the action

𝑆[Ψ̃] = ∫
Ψ̃
Θ𝑘

which depends on the map Ψ̃ but is unrelated to any Lagrangian.

Now look at a variation of maps Ψ̃𝑠. Let 𝑋 = 𝑑/𝑑𝑠|𝑠=0Ψ̃𝑠. Then

𝑑
𝑑𝑠|𝑠=0𝑆[Ψ̃𝑠] = ∫

𝜕Ψ̃
𝑋 ⨼ Θ +∫

Ψ̃
𝑋 ⨼ 𝑑Θ𝑘.
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For variations that fix the boundary,

𝑑
𝑑𝑠|𝑠=0𝑆[Ψ̃𝑠] = ∫

Ψ̃
𝑋 ⨼ 𝑑Θ𝑘.

The form
Ω = −𝑑Θ

is the so-called multisymplectic 𝑘 + 1-form on Λ𝑘𝑇∗𝑀.

This form is non-degenerate: if 𝑋 = 𝑝𝐼𝜕𝑝𝐼 + 𝑞𝑘𝜕𝑞𝑘 then

𝑋 ⨼ Ω = 𝑝𝐼𝑑𝑞𝐼 + 𝑑𝑝𝐼 ∧ 𝑞𝑘(𝜕𝑘 ⨼ 𝑑𝑞𝐼)

So for this to vanish it is clear that all the𝑝𝐼 ’s must vanish. But then some 𝑞𝑘 does not vanish
and without loss of generality we can assume 𝑘 = 1. We can apply 𝑋 ⨼Ω to 𝜕𝑝𝐼0 ∧ 𝜕2⋯𝜕𝑘
where 𝐼0 = (1, 2,… , 𝑘) and obtain a value of 𝑞𝑘 ≠ 0.

Proposition 4.7. Suppose 𝑣 ∈ 𝐵𝑘𝑇𝑞𝑀 has a span ⟨𝐯⟩ in the domain of ℒ. Let 𝛾 be a curve
in 𝐵𝑘𝑇𝑞𝑀 with 𝛾(0) = 𝐯 and suppose ̃𝛾 is a curve in Λ𝑘𝑇∗𝑞𝑀 with ̃𝛾(𝜆) ∈ ℙℒ(𝛾(𝜆)) for all 𝜆.
Then

̇̃𝛾(0) ∈ 𝐯⟂.

Proof. For notational convenience, let 𝐰 = ̇𝛾(0). From equation (4.8) and the assumption
̃𝛾(𝜆) ∈ ℙℒ ∘ 𝛾(𝜆) for all parameters 𝜆 we have

𝑑
𝑑𝜆
|||𝜆=0

𝕤ℒ(𝛾(𝜆)) = 𝐰 ⨼ ℙℒ(𝐯) = 𝐰 ⨼ ̃𝛾(0). (4.9)

On the other hand, Lemma 4.6 alongwith the previouslymentioned assumption on ̃𝛾 imply

𝕤ℒ(𝛾(𝜆)) = 𝛾(𝜆) ⨼ ℙℒ(𝛾(𝜆)) = 𝛾(𝜆) ⨼ ̃𝛾(𝜆).

Taking a derivative and using equation (4.9) we find

𝐰 ⨼ ̃𝛾(0) = ̇𝛾(0) ⨼ ̃𝛾(0) + 𝛾(0) ⨼ ̇̃𝛾(0) = 𝐰 ⨼ ̃𝛾(0) + 𝐯 ⨼ ̇̃𝛾(0).

Hence
𝐯 ⨼ ̇̃𝛾(0) = 0.
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Maximum rank condition: About each 𝐯 ∈ 𝐵𝑘𝑇𝑀 with a span in the domain ofℒ there is
an open set such thatℙℒ as amap into the affine subspaces of dimension (𝑑

𝑘
)−𝑘(𝑑−𝑘)−1 of

Λ𝑘𝑇∗𝑀 has rank 𝑘(𝑑−𝑘) (i.e., )andmoreover𝒫ℒ is an embedded hypersurface ofΛ𝑘𝑇∗𝑀.

Corollary 4.8. Supposeℒ satisfies the maximum rank condition. Let 𝑝 ∈ 𝒫ℒ, so 𝑝 ∈ ℙℒ(𝐰)
for some 𝐰 ∈ 𝐵𝑘𝑇𝑀. Then

𝑇𝑝𝒫ℒ = 𝑣⟂

Lemma: If Ψ̃ is a lift of Ψ then 𝜋∗𝒥Ψ̃ = 𝒥Ψ.

Proposition 4.9. Supposeℒ satisfies themaximum rank condition. If𝐸 is a stationary [needs
tacking down] in𝑀 and if Ψ is a parameterization of 𝐸 then any lift Ψ̃ of Ψ is stationary in
𝒫ℒ.

Proof. Sketch. Consider an arbitrary variation Ψ̃𝑠 of Ψ̃ in 𝒫ℒ. Now
Sloppy
here
about ̇𝛾
needing
to not
vanish
down-
stairs.

Θ(𝒥Ψ̃𝑠) = 𝜋∗(𝒥Ψ̃𝑠) ⨼ Ψ̃𝑠

and hence

𝑑
𝑑𝑠
|||𝑠=0

Θ(𝒥Ψ̃𝑠) = ( 𝑑𝑑𝑠
|||𝑠=0

𝜋∗(𝒥Ψ̃𝑠)) ⨼ Ψ̃0 + 𝜋∗(𝒥Ψ̃0) ⨼
𝑑
𝑑𝑠
|||𝑠=0

Ψ̃𝑠

= ( 𝑑𝑑𝑠
|||𝑠=0

𝜋∗(𝒥Ψ̃𝑠)) ⨼ ℙℒ(𝒥Ψ) + 𝒥Ψ ⨼ 𝑑
𝑑𝑠
|||𝑠=0

Ψ̃𝑠.

For fixed 𝑞, Ψ̃𝑠(𝑞) is a curve in𝒫ℒ starting atΨ(𝑞) ∈ ℙℒ(𝒥Ψ(𝑞)). So Proposition 4.7 implies

𝒥Ψ ⨼ 𝑑
𝑑𝑠
|||𝑠=0

Ψ̃𝑠 = 0

and therefore
𝑑
𝑑𝑠
|||𝑠=0

Θ(𝒥Ψ̃𝑠) = ( 𝑑𝑑𝑠
|||𝑠=0

𝜋∗(𝒥Ψ̃𝑠)) ⨼ ℙℒ(𝒥Ψ).

As a consequence,
𝑑
𝑑𝑠
|||𝑠=0

𝑆[Ψ̃𝑠] = ∫
𝐷
𝐰 ⨼ ℙℒ(𝒥Ψ) (4.10)

where
maybe
flesh out
some of
this in a
lemma?

𝐰 = 𝑑
𝑑𝑠
|||𝑠=0

𝜋∗𝒥Ψ̃𝑠 =
𝑑
𝑑𝑠
|||𝑠=0

𝒥(𝜋 ∘ Ψ̃𝑠).
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Let Φ𝑠 = 𝜋 ∘ Ψ̃𝑠, so Φ𝑠 is a variation of Ψ. Let Φ̃𝑠 be a family of lifts of Φ𝑠. Then, by
stationarity,

Really
need a
lemma
that lifts
exist and
that lifts
of
families
exist.

𝑑
𝑑𝑡𝑆[Ψ̃𝑠] = 0

Equation (4.10) applies equally to the variation Φ̃𝑠 and hence

0 = ∫
𝐷
𝐰̂ ⨼ ℙℒ(𝒥Φ)

where
𝐰̂ = 𝑑

𝑑𝑠
|||𝑠=0

𝜋∗𝒥Φ̃𝑠 =
𝑑
𝑑𝑠
|||𝑠=0

𝒥𝜋 ∘ Φ̃𝑠 =
𝑑
𝑑𝑠
|||𝑠=0

𝒥𝜋 ∘ Ψ̃𝑠

We conclude that the integral on the right-hand side of equation (4.10) vanishes and con-
sequently Ψ̃ is stationary in 𝒫ℒ.

Fix the
sign am-
biguity
problem
here!

Proposition 4.10. Suppose ℒ satisfies the maximum rank condition. If Ψ̃ is stationary in 𝒫ℒ
then it is the lift of a parameterisation of a 𝑘-surface in𝑀.

Proof. Sketch. Suppose Ψ̃ is not such a lift and let Ψ = 𝜋 ∘ Ψ̃. Then there is some 𝑥∗ ∈ 𝐷
such that Ψ̃(𝑥∗) ∉ ℙℒ(𝒥Ψ(𝑥∗)). Set 𝑝∗ = Ψ̃(𝑥∗) and 𝐯∗ = 𝒥Ψ(𝑥∗). Now 𝑝∗ ∈ 𝒫ℒ so
there exists a 𝑘-blade 𝐰 at Ψ(𝑥∗) such that 𝑝∗ ∈ ℙℒ(𝐰). Now 𝐰 is not a multiple of 𝐯
for otherwise ℙℒ(𝐯) = ±ℙℒ(𝐰) (oops. Same sign ambiguity as before). Hence there exists
𝑝 ∈ 𝐰⟂ with 𝐯∗ ⨼ 𝑝 ≠ 0. Corollary 4.8 implies 𝐰⟂ = 𝑇𝑝∗𝒫ℒ and hence we can consider 𝑝
as an element of 𝑇𝑝∗𝒫ℒ. But then

Need a
lemma:
Ω(𝑝 ∧
𝑤) =
−𝑝(𝜋∗𝑤)
if 𝑝 is
vertical.

𝑑Θ(𝑝 ∧ 𝒥Ψ̃) = 𝑝(𝜋∗𝒥Ψ̃) = 𝑝(𝒥Φ) = 𝐯∗ ⨼ 𝑝 ≠ 0.

Since 𝑝 is tangent to 𝒫ℒ at Ψ̃(𝑥∗) it follows that Ψ̃ is not stationary.

4.11 Equations of Motion

We forget about ℒ and work with embedded hypersurfaces of Λ𝑘𝑇∗𝑀.

The following is a straightforward adaptation of Proposition 2.15.
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Proposition 4.11. Let 𝒫 be an embedded hypersurface in Λ𝑘𝑇∗𝑀. A parameterization Ψ ∶
𝐷 → 𝒫 is stationary if and only if

𝑑Θ(𝑉 ∧ 𝒥Ψ(𝑥)) = 0

for all 𝑥 ∈ 𝐷 and all 𝑉 ∈ 𝑇Ψ(𝑥)𝒫.
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