- **1.** Prove that every ball $B_r(x)$ in a metric space (X, d) is an open set.
- **2.** Let *V* be a subset of a metric space (X, d). The set of limit points of *V* are those points *x* that can be written as a the limit of a sequence of points in *V*. Show that a set $V \subseteq X$ is closed if and only if it contains its limit points.
- 3. Let d_1 and d_2 be two metrics on a set X. Show that the following conditions are equivalent.
 - a) For every sequence $\{p_i\}_{i=1}^{\infty}$, if $p_i \xrightarrow{d_1} p$ then $p_i \xrightarrow{d_1} p$.
 - b) For every function $f : X \to \mathbb{R}$, if f is continuous with respect to d_1 then f is continuous with respect to d_2 .
 - c) For every set V, if V is closed with respect to d_1 then V is closed with respect to d_2 .
 - d) For every set U, if U is open with respect to d_1 then U is open with respect to d_2 .

Hint: You might want to show a) \iff b) and a) \implies c) \implies d) \implies a).

- 4. Lee, Problem 2-1
- 5. Lee, Exercise (Not Problem) 2.6