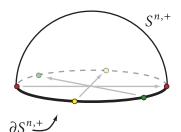
Please see the rules below.

- **1.** Let $C(\mathbb{R})$ denote the set of continuous functions from \mathbb{R} to \mathbb{R} . Show that $C(\mathbb{R})$ is dense in $\mathbb{R}^{\mathbb{R}}$ in the product topology, but not dense in the box topology.
- **2.** The Möbius band is the quotient of $[0,1] \times \mathbb{R}$ where $(0, y) \sim (1, -y)$.
 - a) Show that the Möbius band is a 2-manifold.
 - b) Show that the Möbius band is homotopy equivalent to a circle.
 - c) No rigor please, just a picture or two: what familiar space is the 1-point compactificaiton of the Möbius band?
- **3.** You will recall that showing that \mathbb{RP}^n is Hausdorff was a hassle. Here's a slick technique when the quotient you are looking at arises (as it often does!) from a group action.
 - a) Lee 3-22 b
 - b) Show \mathbb{RP}^n is Hausdorff. (Hurrah Closed Map Theorem!)
- 4. Suppose the Earth is a sphere and that temperature is a continuous function of position on Earth. Prove that there is a point p on Earth where the temperature is the same as at its antipodal point -p.

5.

- a) Show that the upper half sphere $S^{n,+}$ with antipodal points on $\partial S^{n,+}$ identified is homeomorphic to \mathbb{RP}^n .
- b) Consider $X = \{(xy, yz, zx, x^2, y^2, z^2) \in \mathbb{R}^6 : x^2 + y^2 + z^2 = 1\}$. Prove that this set is homeomorphic to \mathbb{RP}^2 .
- **6.** Suppose *G* is a topological group, *A* is a closed subset, and *B* is a compact subset. Show that *AB* is closed. Hint: Nets!
- 7. Recall that a set $A \subset X$ is a retract of X if there is a continuous $f : X \rightarrow A$ such that f(a) = a for all $a \in A$.
 - a) Show that if *X* is Hausdorff and *A* is a retract of *X* then *A* is closed.
 - b) Let *A* be a two point subset of \mathbb{R}^2 . Show that it is not a retract of \mathbb{R}^2 .
 - c) Show that the closed ball $\overline{\mathbb{B}^2}$ is a retract of \mathbb{R}^2 .
 - d) Show that S^1 is not a retract of \mathbb{R}^2 .



Gluing a half sphere.

- **8.** Consider a map $g : S^1 \to S^1$. Using degree theory techniques, show that g admits a lift $\tilde{g} : S^1 \to \mathbb{R}$ if and only if deg(g) = 0.
- **9.** Lee 9-5
- **10.** Compute the fundamental groups of the following spaces:
 - a) The projective plane with two points removed.
 - b) A torus with two points removed.
 - c) The union of the unit sphere S^2 in \mathbb{R}^3 with the *z*-axis.

Rules and format:

- You are welcome to discuss this exam with me (David Maxwell) to ask for hints and so forth.
- If you find a suspected typo, please contact me as soon as possible and I will communicate it to the class if needed.
- You may not discuss the exam with anyone else (including an AI) until after the due date/time.
- You are permitted to reference either of the two texts used for the class (Lee or Crossley). No other resources are permitted.
- Each problem is weighted equally (10 points each).
- The due date/time is absolutely firm.
- We will schedule a hints sessions for this exam.