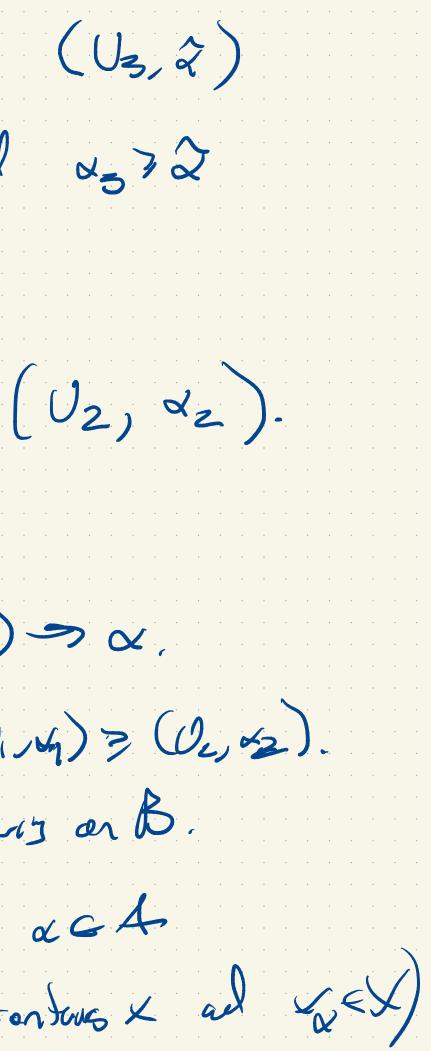
every net in X hus Goal: A space X is compart iff a convegent subhet. a) A net has a subnet conveging to X Two parts if ad only if X is a cluster pourt of the not. b) A spuce X is compact iff every ret mX has a cluster pourt.

Prep: Suppose the net Charact has a subset Chapped convigues to some x. Then x is a charter point. Pf: Let LXx BBB be a subrot concessing to X. Let U be an open set that contains x. Let $\alpha_0 \in A$. (Job: show there exists $\alpha_7 \propto_0$ such that $x_{\alpha} \in U$.) Pick B. so that ap > do. (cofinal) Pick \$2 50 that if B7, Bz Man XxBEU. (Concernance) Pick Bz with \$37 Bi ad Bz7 Bz. (directed reso)

T claim A_{B_3} , d_0 and $X_{A_{B_3}} \in U$. from above α_{B3} > α_B, > α_o ad hence α_{B3}7 do. Observe tras, Jury (th cr 209 845) Moreover since $\beta_3 \ge \beta_2$, $x_{\beta_3} \in O$ by the choice of Bz,

Prop: Suppose < Xx > 15 a ret will a cluster point X. Then the exists a subret of the net that conveges to X. Pf: Let D= Z(U,x): UGZ(x) ad & E A and x EUZ. We order B by (U,x,)> (Uz,xz) of U, EUz ad x, > x2. I clann B is a directed set. Then the order Bis evaderty reflexere and transitive, To show it is directed pick (U,N) and (UZ,NZ) in B. Let Uz= U.NUz. Using durected ress up an

Ind à vhere àrix, ad àrix. (Uz, 2) Since × 15 a cluster point we can fud x372 ad $X_{x_3} \in \mathcal{O}_3$. Then $(\mathcal{O}_3, \alpha_3) \in \mathcal{B}$, $(U_{3}, \varkappa_{3}) \not\geq (U_{2}, \widehat{\varkappa}) \not\geq (U_{2}, \varkappa_{2}).$ Monewer Similarly (US, dy) 7 (U, d) -We define a map B>A by (U,x) > x. To see this mp is incrusing suppose (U, M) > (U, 2). Then d, > dz by det at the orders on B. The map is costinal since for every a GA (X, d) GB (since X is open and continues X and Lex)



(Ire. the mp Sran Bto Avs sorjective and here $\beta \leq (w, \gamma)$ co + ina()XIBIX Consider the subnot (X487BEB I clam it conveges to X. Job: Shaw that gover an aperset O cantaing X the is a Bo so that if BZBO xEO. Let U be an open set conting x. Since X 13 à cluster point there exists on do with $X_{do} \in \mathcal{O}$. Let $\mathcal{O}_0 = \mathcal{O}$.

Let Bo = (Vo, do), Suppose B= (V, a) EB and BZ Bo. Job: Show XXBEU. Observe X_{xB} = X_x and X_x EV by definition of B. Marcow, she BZBO VEU.= U. So XXCU as required.

a d 2 (/ 5//// . 🏉 . d' - **(** -K

•			٠	٠		٠	٠	•	٠	٠	٠	٠	٠		٠			٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
									•		•	•					•	
		•		•	•				•		٠	٠					•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•	•		•			•							•
•		٠	•	•	•	•		•	•		٠	٠	٠	•	٠	•		0
			•	•		٠			•			•			•		•	٠
•	•	•		•	•		•		•	•	•	•		•		•	•	•
																		٠
		•			•				•		•	٠					•	٠
		•		•	•		•		•	•	•	٠			•		•	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•	•			•		•	٠	•		•		•	٠
•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	٠	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
												٠						
		•			•				•		•	٠					•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		٠		•	•		•		٠		٠	٠					•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		٠	•		٠	•						٠					٠	٠
	•	•	•	*	•	٠		•	٠	•	•	٠	•		•	•	٠	٠
•	•	•	•	•	•	•	•		•					•	•		•	•
•	•	•	•	•	•	•	•	•					•				•	•
		٠	٠		٠	•		٠			٠				٠			
			٠		•	•	•		٠						•			
•	•	•	•													•		
											•	•					•	
		٠	•	•	٠	•	•		٠	•	٠	٠	•	•			٠	٠
		٠	•	•														•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•	•	•				٠		•	•			•	•	٠	٠
		٠		•	•	•	•		•						•		٠	٠
•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•