Prop: A sequentially compart 2nd countable space is compact. Pf: Let ZUZZEI be an open cover at the sequentially compart 2nd countable space X. Second countable spaces ve Londelöf so we can extract a coentrable subcover, suy, 20:3:=: Suppose to the contrary that this countable subcover does not almit a finite subcover. The set U, does not cover X so I can pick X, & U,. The sets Unad On do not cover X so we can pick the Unilly. (on tonung inductively we can find $x_j \notin \bigcup_{k=1}^{\omega} \bigcup_{k=1}^{\omega} k_{j}$

Became X is sequentially conput we can extract a subsequere Xjk conversing to some XCX. Since the 20;3 coves Xue confind Juith XEUJ. Because X, -> X Nee is K 50 that if k7K $x_{j_{k}} \in \mathcal{O}_{\mathcal{J}}$. Observe that if $k \ge \mathcal{J} = \tilde{J}_{k} \ge \tilde{J}_{\mathcal{J}} \ge \tilde{J}_{\mathcal{J}}$ and have xix & U, UU2 U-- OUJ. In porticular if k ? K ad k ? J then Xjk E QJ

This is a contradiction, Correpording result: sequentially computer + metricable => Cou a) See text 6) take not analysis.

	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•
	•	•		•	•		•		•	•	•	•		•	•	•	•	•
		•	•	٠	٠	•	٠	•	٠	•	•	•		•	•	•	•	
5	-		1									•						
		•		•	•		٠		٠		•	•		•	•	•	•	•
	1																	
_	-																	
									•									
	. 1																	
<	,	<u>،</u>	•	•	•		•		•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	٠	•
	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•
	•	٠	•	*	•	•	٠	•	٠	*	•	٠	•	•	*	•	•	•
	•	•	•	•	•	•	۰	•	٠	•	•	•	•	•	•	•	•	•
	•	•		•			•		•		•	•	•	•	•	•	•	•
	•	•	•	•	•		•		•	•		•		•	•	•	•	•
	•				•		٠		•	•	•	•		•	•	•	•	•
	•		•		•		٠		٠		•	•		•	•		•	•
	•																	
																		•
	•	•	•	•	•	•	•	•	•		*	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	۰	•	٠	•	٠	٠	•	٠	•	•	٠	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	۰	•	٠	•	٠	٠	•	٠	•	•	٠	•
	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
	•	•		•	•		•		•	•	•	•		•	•	•	•	•
	•	•	•						•			•	•	•	•	•	•	
	•											•						
					•		•		•	•	•	•				•	•	
							٠		٠									
						·					·							
	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	•	•	•	•	•	*	•	•	•	•
	•	•	•	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•

Nets: (generalized sequences) $M \longrightarrow X$ $X(i) = x_i$ a sequence . 3 such a map Def: A directed set is a set A togette uilla relation S Sat 35yng 1) a S a for all a EA (reflexive) 2) IF X S B ad B S & Then X L & (transitive) 3) If and BEA there is YEA with Yra ad 87B.

•**N**•<u>•</u>•••• · 12 Examples max (1, , 1 2 (a,b) ≤ (c,d),f 2) N× **C** ß

٠	• •	• •			٠	•	٠	•	•	٠	•	•	•	٠	•	•
		• •														
*	• •	* *	*	•	•	•	•	•	•	*	•	·	•	•	•	•
•	• •	• •	•	•		•	٠	•	•	۰	•	•	•	•	•	•
•	• •	• •	•	•	•		•	•		•	•	•	•	•	•	•
	• •		•		٠	•	•		•	•	•		•	•		
	• •															
	τ Δ	C														
*	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1		· (•	•		•	٠	•	•	۰	•	•	•	٠	•	•
5	5	d	1	•	•	•	•	•	•	•	•	•	•	•	•	•
				•	•	•	٠	•		٠	•	•	•	•	•	
							٠			٠				•		
•	• •	• •	•	•	۰	•	۰	•	•	۰	٠	•	•	٠	•	•
•	• •	• •	•	•	•		•	•		•	•	•	•	•	•	•
			٠		٠	•	•		•	•	•			•		
•	• •	• •														
٠	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	• •	• •	•	•	•	•	٠	•	•	•	•	•	*	•	•	•
•	• •	• •		•	•	•	•		•	•	•	•	•	•		
•	• •	• •		•	٠		٠	•		٠	٠	•	•	٠	•	•
÷	• •	• •		•	•	•	•		•	•	•	·		÷	•	•
•	• •	• •	•	•	•		•	•	•	•	•	•	•	•	•	•
•	• •	• •	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
٠	• •	• •	•	•			•	•		•	•	•	•	•	•	•
•	• •	• •			•					•		•		•		
•	• •	• •	٠		٠	•	•	•	·	•		•	•	•	•	
•	• •	• •	•	•	•	•	٠	•	•	۰	•	•		٠	•	•
•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	• •	• •			•		٠			٠	•	•	•	•	•	
		• •		•		•	•		•				*			

is a directed set 3) a directed AXA 13 also a, Laz $(a_{1}, b_{1}) \leq (a_{2}, b_{2})$ 6, 5 62 Given $d = (a_1, b_1)$ and $\beta = (a_2, b_2)$ 13 there & ZX & XZB. $\gamma = (\gamma, \gamma)$ Pick &, will &, 7 a, and &, 7 az. Pick Oz with Jz?b, ad Jz > 52

	• •	٠	٠	•	•	٠	•	•	•	•	•	•		•	•		•
		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
						•						•					
		٠			٠	0		0		•	•	•	•		•		
	• •	•	٠	•	٠	٠	•		•	•	•	•	•	٠		٠	•
	• •	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	0 0	•	•	•	•	•	•	•	•	•	•	٠	•		•	•	•
		•	•	•		•	•	•	•	•		•					
H	2,1					•		•			•	•					•
		٠		•	•	•	•	•		•	•	٠				•	•
• •		•	•	•	٠	•	•	0	•	•	•	•	٠	٠	•	•	•
	• •	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •																
																	•
						•		•			•						•
	• •	٠	٠	•	٠		•		•	•	•	٠	•		•	•	•
		٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •	•	•	•	•	•	•	•	•	•				•		•	•
	• •			•	٠	•		٠		•			•				
		٠		•	٠	•		0		•	•	•	•		•	•	٠
	• •	•	٠	•	•	•	•	•	•	•	•	•		•	•	•	•
		٠	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		N	•														•
	N.			•	٠	٠	•	٠	•	•		•	•	٠	•	•	•
	VZ)	•	•	٠		•		٠	٠	•	٠	٠	0	•		•
	• •			•	٠	٠	•	٠	•	•	•	•	٠	٠	•	٠	•
		•	•	•	•	•	•	•	•	•	•	•	•			•	•
	• •					•											
					٠	٠				•	•	•	•	•		•	•
			•	•	•	•	•	·	•	•	•	•	•	•	•	•	•
• •		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	• •									•							•

4) X a topologocal space xeX A = 2/(x) (the set of all open sets containing x). U>V-f U=V ordering by revese inclusion. U>U? UEU? USV, VSW => USW/ UZV, VZWZZVZW? $W \in \mathcal{V}(w) \quad W \subseteq \mathcal{O} \Longrightarrow W_{\mathcal{I}}\mathcal{O}$ $W \subseteq \mathcal{V} \Longrightarrow W_{\mathcal{I}}\mathcal{V}.$ $U, V = U \cap V$

Det. Let X be a set. A ret in X is a function from a dérectel set A into X. Are sequences rets? IN-9X tim: X(x) with a EA $\frac{2}{2}$ $\frac{3}{12}$ 6 4

•			•			•		•						•	•	•	•	
•	٠			•		•	•			•		•	•	•	•		•	•
		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•
•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
٠	0	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	0	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
٠	0	٠	•	•	٠	•	•	٠	•	•	•	٠	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•
	0		•															
	•																	
	0																	
												•						
																•		
	•		•	•		•	•	•		•	•	•	•	•	•	•	•	
٠	0	•	•	•	•	•	٠	•		•	•	٠	٠	•	•	•	•	
			•	•					•			•		•	•	•	•	
•	٠	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	•	•
٠	۰	٠	•		٠	•	٠	٠	•	٠	·	٠	٠	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
•		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠	•	٠	٠	•	•	•	٠	•	•	٠	•	٠	•	٠	•	٠	•
•	۰	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
7	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
٤	0	٠	•		•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•
/	<u>л</u> с		k							•	•	•		•		•	•	
		- /																
												•						
																•		
	0																	
												•			•			
	0						•			•		•	٠					
	٠	•			•		•			•		•	•			•		
		•	•	•	•	•				•	•	•	•	•	•	•	•	
			•	•		•								•	•	•	•	
	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Many topological properties on be characterized in terms a E.g. In netric spaces us con characterise le closure a using sequences. XEV (= Mare is a sequence on V Prepi. Let X be a topologocal space ad let UEX. Than XEV if ad only if the is a not converging to X. Def: Let A be a directed set and let a EA The teil of a. in A T(a.) is ZaEA: a?

<u>}</u>				•	· · ·	•	• • •	•	•	•	•	•	•	•
<u>Q</u>		500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FL					•	•	•	•	•	•	•
مین بر ا			lan i	+	- - - - - - - -	N N			· · · ·	•	•	•	•	•
· · ·	· · ·	· · ·	· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	•	•	•	•
<i>i</i> 1			· · ·	•	· · ·			•	• • •	• • •	• • • •	•	•	•
· · ·	· · ·	· · ·	· · ·	•	· · ·	•	•	•	•	•	•	•	•	•
7, 6	×	3.	· · ·	•	· · ·	•	•	•	•	•	•	•	•	•
· ·			· ·		· ·	•	•				•	•		•

T(a) is itself a darected set under Eterase: The some ordering T(5) = 3 nB(N) : n7,55A= 1X) Let L'XX det be a net in X. Det: A tail of the net 15 a net of the (La) dET(do) 40-

,	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	*	*	•	٠	•	*	•	•	•	•	•	*	•	•	•	•	•	•
	•	•	•	•								•	•	•	•	0		•	•
~				•				•			•	•			•	•	•	•	
		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				•		•						•			•	•		•	•
,				•								•				•			•
		•	•	•		•	•	٠		•	•	•	•	•	•	•	•	•	
	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•
		•	•	•	٠	•	•			•		•	•	•		•			•
				•								•			•	•		•	
		•		•	•			•	•	•			•		•	•		•	•
	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•
•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•				•		•				•		•			•	•			•
					•				•	•						•			•
	•			•		•						•		•	•			•	•
	Λ	•	•		•	•	•	•	•	•			•	•		•			•
2	۶	N			٠	•	•	•	•	•			•	•		•			•
			ノ	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																•			
		•	•	•		•	•	•			•	•	•	•	•	•	•	•	•
								•											
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•			•		•						•						
		•			•		•		•	•			•	•		•			
		•	•	•		•						•	•	•	•	•		•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•		•		•		•	•	•	•	•	•	•	•	•	•
			•	•		•						•		•	•			•	
	٠	•	•	•	•		•	•		•	•	•	•	•		•			

Det: Let X be a topological space, XEX, and CXX Tref be a net in X. We say to make (Litar converse tox) If for every open set U containing X, U contains all tens of a tail < Xa > a ET(do). Remark: Convegence can be formulated: For all open sets U contains x, Nea exists x, such that if x7x0 than xx EU.

Lemma: Sappose Low ZEA is a not in VEX con Then x E V. Pf: We will show x is a contact point of V. Let 0 be an open set certains x. Since the exists NG 50 that if any XXE In particular X = U. Since X = V, X = Lenna: Let X be a topologual space and VEX If x G V Then the exists a net in V conve

				•	• •		• •	•
vegog				•	• •	•	• •	•
		· ·		•	• •	•	• •	•
		· ·	· · ·	•	· ·	•	•••	•
				•	• •		• •	
							• •	•
· · · · · ·			· · · ·	•	· ·	•	· ·	•
	י יי יי אי פ	 			• •	•	• •	
	· · · ·	• •	· · ·	•	· ·	•	· ·	•
Ο.		• •				•		•
			••••	•	 	•	•••	•
5 a	CON	Tas	၉၀	-		•	• •	•
		 		•				•
· · · · · ·	· · · ·	Ĩ		•	• •	•	• •	•
			• • •	•	• •	•	• •	
	· · ·	· ·	· · · ·	•	· ·	•	· ·	•
	· · · · · · · · · · · ·	· ·	· · · ·	•	· · ·	•	· · ·	•
ergily			· · · · ·		· · · · · · · · · · · · · · · · · · ·	•	· · ·	
ergig			· · · · ·			•	· · · · · · · · · · · · · · · · · ·	

Pf: Let $A = \mathcal{V}(x)$ ordered by revoxe inclusion for each UEA there exists some $x_U \in V$, since X is m V ad is have a contact point at V. We now have a net (XV) UENC) I clam this net converses to X. Lot W be an open set containing X. Observe that if UZW (so UEW) $x_{U} \in U \subseteq W.$ So W contrains the tril of the net of terms XU with UTW.